Plug the Database & Play With Automatic Testing: Improving System Testing by Exploiting Persistent Data

Diego Clerissi, G. Denaro, M. Mobilio, L. Mariani
{"title":"Plug the Database & Play With Automatic Testing: Improving System Testing by Exploiting Persistent Data","authors":"Diego Clerissi, G. Denaro, M. Mobilio, L. Mariani","doi":"10.1145/3324884.3416561","DOIUrl":null,"url":null,"abstract":"A key challenge in automatic Web testing is the generation of syntactically and semantically valid input values that can exercise the many functionalities that impose constraints on the validity of the inputs. Existing test case generation techniques either rely on manually curated catalogs of values, or extract values from external data sources, such as the Web or publicly available knowledge bases. Unfortunately, relying on manual effort is generally too expensive for most practical applications, while domain-specific and application-specific data can be hardly found either on the Web or in general purpose knowledge bases.This paper proposes DBINPuTs, a novel approach that reuses the data from the database of the target Web application, to automatically identify domain-specific and application-specific inputs, and effectively fulfill the validity constraints present in the tested Web pages. DBINPUTS can properly cope with system testing and maintenance testing efforts, since databases are naturally and inexpensively available in those phases. To extract valid inputs from the application databases, DBINPUTS exploits the syntactic and semantic similarity between the identifiers of the input fields and the ones in the tables of the database, automatically resolving the mismatch between the user interface and the schema of the database. Our experiments provide initial evidence that DBINPUTS can outperform both random input selection and Link, a competing approach for searching inputs from knowledge bases.","PeriodicalId":106337,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3416561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A key challenge in automatic Web testing is the generation of syntactically and semantically valid input values that can exercise the many functionalities that impose constraints on the validity of the inputs. Existing test case generation techniques either rely on manually curated catalogs of values, or extract values from external data sources, such as the Web or publicly available knowledge bases. Unfortunately, relying on manual effort is generally too expensive for most practical applications, while domain-specific and application-specific data can be hardly found either on the Web or in general purpose knowledge bases.This paper proposes DBINPuTs, a novel approach that reuses the data from the database of the target Web application, to automatically identify domain-specific and application-specific inputs, and effectively fulfill the validity constraints present in the tested Web pages. DBINPUTS can properly cope with system testing and maintenance testing efforts, since databases are naturally and inexpensively available in those phases. To extract valid inputs from the application databases, DBINPUTS exploits the syntactic and semantic similarity between the identifiers of the input fields and the ones in the tables of the database, automatically resolving the mismatch between the user interface and the schema of the database. Our experiments provide initial evidence that DBINPUTS can outperform both random input selection and Link, a competing approach for searching inputs from knowledge bases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
插入数据库并使用自动测试:利用持久数据改进系统测试
自动Web测试中的一个关键挑战是生成语法和语义上有效的输入值,这些输入值可以执行对输入有效性施加约束的许多功能。现有的测试用例生成技术要么依赖于手动编制的值目录,要么从外部数据源(如Web或公开可用的知识库)中提取值。不幸的是,对于大多数实际应用程序来说,依赖于手工操作的成本通常太高,而特定于领域和特定于应用程序的数据很难在Web或通用知识库中找到。本文提出了DBINPuTs,这是一种重用目标Web应用程序数据库中的数据的新方法,可以自动识别特定于领域和特定于应用程序的输入,并有效地满足测试Web页面中存在的有效性约束。dbinput可以适当地处理系统测试和维护测试工作,因为数据库在这些阶段是自然且廉价的。为了从应用程序数据库中提取有效的输入,DBINPUTS利用输入字段的标识符与数据库表中的标识符之间的语法和语义相似性,自动解决用户界面与数据库模式之间的不匹配。我们的实验提供了初步证据,表明dbinput可以优于随机输入选择和Link(一种从知识库中搜索输入的竞争性方法)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Generating Thread-Safe Classes Automatically Anti-patterns for Java Automated Program Repair Tools Automating Just-In-Time Comment Updating Synthesizing Smart Solving Strategy for Symbolic Execution Identifying and Describing Information Seeking Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1