Identification of potentially infeasible program paths by monitoring the search for test data

P. M. Bueno, M. Jino
{"title":"Identification of potentially infeasible program paths by monitoring the search for test data","authors":"P. M. Bueno, M. Jino","doi":"10.1109/ASE.2000.873665","DOIUrl":null,"url":null,"abstract":"A tool and techniques are presented for test data generation and identification of a path's likely unfeasibility in structural software testing. The tool is based on the dynamic technique and search using genetic algorithms. Our work introduces a new fitness function that combines control and data flow dynamic information to improve the process of search for test data. The unfeasibility issue is addressed by monitoring the genetic algorithm's search progress. An experiment shows the validity of the developed solutions and the benefit of using the tool.","PeriodicalId":206612,"journal":{"name":"Proceedings ASE 2000. Fifteenth IEEE International Conference on Automated Software Engineering","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ASE 2000. Fifteenth IEEE International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2000.873665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

A tool and techniques are presented for test data generation and identification of a path's likely unfeasibility in structural software testing. The tool is based on the dynamic technique and search using genetic algorithms. Our work introduces a new fitness function that combines control and data flow dynamic information to improve the process of search for test data. The unfeasibility issue is addressed by monitoring the genetic algorithm's search progress. An experiment shows the validity of the developed solutions and the benefit of using the tool.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过监视对测试数据的搜索来识别潜在的不可行的程序路径
提出了一种用于结构化软件测试中测试数据生成和路径不可行性识别的工具和技术。该工具基于动态技术和遗传算法的搜索。本文引入了一种新的适应度函数,将控制和数据流动态信息相结合,改善了测试数据的搜索过程。通过监测遗传算法的搜索进度来解决不可行性问题。实验证明了所开发的解决方案的有效性和使用该工具的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mutation operators for specifications Towards explicit representation of architectural design assumptions Specialization patterns Automated security checking and patching using TestTalk Controlled automation of consistency enforcement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1