EncSIM: An encrypted similarity search service for distributed high-dimensional datasets

Xiaoning Liu, Xingliang Yuan, Cong Wang
{"title":"EncSIM: An encrypted similarity search service for distributed high-dimensional datasets","authors":"Xiaoning Liu, Xingliang Yuan, Cong Wang","doi":"10.1109/IWQoS.2017.7969151","DOIUrl":null,"url":null,"abstract":"Similarity-oriented services serve as a foundation in a wide range of data analytic applications such as machine learning, target advertising, and real-time decisions. Both industry and academia strive for efficient and scalable similarity discovery and querying techniques to handle massive, complex data records in the real world. In addition to performance, data security and privacy become an indispensable criterion in the quality of service due to progressively increased data breaches. To address this serious concern, in this paper, we propose and implement “EncSIM”, an encrypted and scalable similarity search service. The architecture of EncSIM enables parallel query processing over distributed, encrypted data records. To reduce client overhead, EncSIM resorts to a variant of the state-of-the-art similarity search algorithm, called all-pairs locality-sensitive hashing (LSH). We describe a novel encrypted index construction for EncSIM based on searchable encryption to guarantee the security of service while preserving performance benefits of all-pairs LSH. Moreover, EncSIM supports data record addition with a strong security notion. Intensive evaluations on a cluster of Redis demonstrate low client cost, linear scalability, and satisfied query performance of EncSIM.","PeriodicalId":422861,"journal":{"name":"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)","volume":"212 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2017.7969151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Similarity-oriented services serve as a foundation in a wide range of data analytic applications such as machine learning, target advertising, and real-time decisions. Both industry and academia strive for efficient and scalable similarity discovery and querying techniques to handle massive, complex data records in the real world. In addition to performance, data security and privacy become an indispensable criterion in the quality of service due to progressively increased data breaches. To address this serious concern, in this paper, we propose and implement “EncSIM”, an encrypted and scalable similarity search service. The architecture of EncSIM enables parallel query processing over distributed, encrypted data records. To reduce client overhead, EncSIM resorts to a variant of the state-of-the-art similarity search algorithm, called all-pairs locality-sensitive hashing (LSH). We describe a novel encrypted index construction for EncSIM based on searchable encryption to guarantee the security of service while preserving performance benefits of all-pairs LSH. Moreover, EncSIM supports data record addition with a strong security notion. Intensive evaluations on a cluster of Redis demonstrate low client cost, linear scalability, and satisfied query performance of EncSIM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EncSIM:用于分布式高维数据集的加密相似度搜索服务
面向相似性的服务是广泛的数据分析应用程序(如机器学习、目标广告和实时决策)的基础。工业界和学术界都在努力寻求高效、可扩展的相似性发现和查询技术,以处理现实世界中大量、复杂的数据记录。除了性能之外,由于数据泄露的日益增加,数据安全和隐私成为服务质量不可或缺的标准。为了解决这个严重的问题,在本文中,我们提出并实现了“EncSIM”,一个加密的、可扩展的相似度搜索服务。EncSIM的架构支持对分布式加密数据记录进行并行查询处理。为了减少客户机开销,EncSIM采用了最先进的相似性搜索算法的一种变体,称为全对位置敏感散列(LSH)。为了在保证服务安全性的同时保留全对LSH的性能优势,提出了一种基于可搜索加密的EncSIM加密索引结构。此外,EncSIM支持数据记录添加,具有很强的安全性。在Redis集群上的密集评估表明,EncSIM具有低客户端成本、线性可扩展性和令人满意的查询性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
When privacy meets economics: Enabling differentially-private battery-supported meter reporting in smart grid Task assignment with guaranteed quality for crowdsourcing platforms Social media stickiness in Mobile Personal Livestreaming service Multicast scheduling algorithm in software defined fat-tree data center networks A cooperative mechanism for efficient inter-domain in-network cache sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1