Cargo Compartment Fire Extinguishing System

Behbahani-Pour Mj, G. Radice
{"title":"Cargo Compartment Fire Extinguishing System","authors":"Behbahani-Pour Mj, G. Radice","doi":"10.4172/2168-9792.1000178","DOIUrl":null,"url":null,"abstract":"In all large passenger transport airplanes, halon fire bottles are used to extinguish fire in the cargo compartments. Halon as a fire-extinguishing agent, contributes to the destruction of stratospheric ozone in the atmosphere and it is banned in many countries. FAA considers halon 1301 as an effective firefighting agent due to its low toxicity and noncorrosive properties but because it damages the ozone layer, it has been phased out of production. However, it is still widely used on commercial aircraft until a suitable replacement is found. In this paper we will present an alternative approach to using halon 1301 as a fire fighting paradigm. In the proposed method, nitrogen is first extracted from the atmosphere by using the onboard air separator module it is then cooled, and pressurized into the cargo compartments to suppress any fire. Several methodologies can be used to increase the flow rate from the air separator module, to extinguish fire in cargo compartment.","PeriodicalId":356774,"journal":{"name":"Journal of Aeronautics and Aerospace Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aeronautics and Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9792.1000178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In all large passenger transport airplanes, halon fire bottles are used to extinguish fire in the cargo compartments. Halon as a fire-extinguishing agent, contributes to the destruction of stratospheric ozone in the atmosphere and it is banned in many countries. FAA considers halon 1301 as an effective firefighting agent due to its low toxicity and noncorrosive properties but because it damages the ozone layer, it has been phased out of production. However, it is still widely used on commercial aircraft until a suitable replacement is found. In this paper we will present an alternative approach to using halon 1301 as a fire fighting paradigm. In the proposed method, nitrogen is first extracted from the atmosphere by using the onboard air separator module it is then cooled, and pressurized into the cargo compartments to suppress any fire. Several methodologies can be used to increase the flow rate from the air separator module, to extinguish fire in cargo compartment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
货舱灭火系统
在所有大型客机中,货舱都使用哈龙灭火瓶灭火。哈龙作为灭火剂,有助于破坏大气中的平流层臭氧,在许多国家被禁止使用。美国联邦航空局认为哈龙1301是一种有效的灭火剂,因为它的低毒和无腐蚀性,但由于它破坏臭氧层,它已逐步停产。然而,在找到合适的替代品之前,它仍然广泛用于商用飞机。在本文中,我们将提出一种使用哈龙1301作为灭火范例的替代方法。在提出的方法中,氮气首先通过机载空气分离模块从大气中提取,然后冷却,并加压到货舱中以抑制任何火灾。有几种方法可用于增加空气分离器模块的流量,以扑灭货舱中的火灾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanical Behavior of a Fuselage Stiffened Carbon-Epoxy Panel under Debonding Load On the Modeling of Light Aircraft Landing Gears Various aspects of situation awareness with respect to human-machine-interaction while using optoavionic cockpit instrumentation in aircraft Autopilot Design of Unmanned Aerial Vehicle A New Methodology for Aerodynamic Design and Analysis of a Small Scale Blended Wing Body
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1