Personalized Collaborative Filtering Recommendation Algorithm based on Linear Regression

Jia Wu, Chao Liu, Wei Cui, Yuxiao Zhang
{"title":"Personalized Collaborative Filtering Recommendation Algorithm based on Linear Regression","authors":"Jia Wu, Chao Liu, Wei Cui, Yuxiao Zhang","doi":"10.1109/ICPDS47662.2019.9017166","DOIUrl":null,"url":null,"abstract":"A personalized collaborative filtering recommendation algorithm based on a linear regression model. Constructing the linear regression model based on the user label weight matrix and the user-item scoring matrix, and the gradient regression method is used to minimize the value of the linear regression cost function to obtain the item label. Then, the user and item label weight matrix are substituted into the linear regression model to obtain the user's predicted scores for all unrated items. Using the SlopeOne algorithm principle, calculate the difference between the predicted score and the actual score, and the predicted result is adjusted to obtain the final predicted score. Sort the results and recommend Top-N items to target users. Experiments show that the algorithm's recommendation accuracy is significantly improved than the traditional collaborative filtering algorithm. And the recommended results are interpretable and can meet the individual needs of users.","PeriodicalId":130202,"journal":{"name":"2019 IEEE International Conference on Power Data Science (ICPDS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Power Data Science (ICPDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPDS47662.2019.9017166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A personalized collaborative filtering recommendation algorithm based on a linear regression model. Constructing the linear regression model based on the user label weight matrix and the user-item scoring matrix, and the gradient regression method is used to minimize the value of the linear regression cost function to obtain the item label. Then, the user and item label weight matrix are substituted into the linear regression model to obtain the user's predicted scores for all unrated items. Using the SlopeOne algorithm principle, calculate the difference between the predicted score and the actual score, and the predicted result is adjusted to obtain the final predicted score. Sort the results and recommend Top-N items to target users. Experiments show that the algorithm's recommendation accuracy is significantly improved than the traditional collaborative filtering algorithm. And the recommended results are interpretable and can meet the individual needs of users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于线性回归的个性化协同过滤推荐算法
基于线性回归模型的个性化协同过滤推荐算法。构建基于用户标签权重矩阵和用户-物品评分矩阵的线性回归模型,采用梯度回归方法对线性回归代价函数的值进行最小化,得到物品标签。然后,将用户和物品标签权重矩阵代入线性回归模型,得到用户对所有未评级物品的预测分数。利用SlopeOne算法原理,计算预测分数与实际分数的差值,并对预测结果进行调整,得到最终的预测分数。对结果进行排序,并向目标用户推荐Top-N项。实验表明,与传统的协同过滤算法相比,该算法的推荐准确率有显著提高。推荐结果具有可解释性,能够满足用户的个性化需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
G-Key: An Authentication Technique for Mobile Devices Based on Gravity Sensors * Thermal-Electromagnetic Analysis of Automotive IPMSM on Driving Cycles The Amplitude & Frequency Bilateral Modulation Characteristics of Wind Speed Signal An Improved Sequential Pattern mining Algorithm based on Large Dataset Analysis and Measures of 10kV Bus PT Breakdown Accident
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1