Heterogeneous Manycore Architectures Enabled by Processing-in-Memory for Deep Learning: From CNNs to GNNs: (ICCAD Special Session Paper)

Biresh Kumar Joardar, Aqeeb Iqbal Arka, J. Doppa, P. Pande, Hai Helen Li, K. Chakrabarty
{"title":"Heterogeneous Manycore Architectures Enabled by Processing-in-Memory for Deep Learning: From CNNs to GNNs: (ICCAD Special Session Paper)","authors":"Biresh Kumar Joardar, Aqeeb Iqbal Arka, J. Doppa, P. Pande, Hai Helen Li, K. Chakrabarty","doi":"10.1109/ICCAD51958.2021.9643559","DOIUrl":null,"url":null,"abstract":"Resistive random-access memory (ReRAM)-based processing-in-memory (PIM) architectures have recently become a popular architectural choice for deep-learning applications. ReRAM-based architectures can accelerate inferencing and training of deep learning algorithms and are more energy efficient compared to traditional GPUs. However, these architectures have various limitations that affect the model accuracy and performance. Moreover, the choice of the deep-learning application also imposes new design challenges that must be addressed to achieve high performance. In this paper, we present the advantages and challenges associated with ReRAM-based PIM architectures by considering Convolutional Neural Networks (CNNs) and Graph Neural Networks (GNNs) as important application domains. We also outline methods that can be used to address these challenges.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Resistive random-access memory (ReRAM)-based processing-in-memory (PIM) architectures have recently become a popular architectural choice for deep-learning applications. ReRAM-based architectures can accelerate inferencing and training of deep learning algorithms and are more energy efficient compared to traditional GPUs. However, these architectures have various limitations that affect the model accuracy and performance. Moreover, the choice of the deep-learning application also imposes new design challenges that must be addressed to achieve high performance. In this paper, we present the advantages and challenges associated with ReRAM-based PIM architectures by considering Convolutional Neural Networks (CNNs) and Graph Neural Networks (GNNs) as important application domains. We also outline methods that can be used to address these challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于内存处理的异构多核深度学习架构:从cnn到GNNs (ICCAD特别会议论文)
基于电阻随机存取存储器(ReRAM)的内存中处理(PIM)架构最近成为深度学习应用程序的流行架构选择。基于rerram的架构可以加速深度学习算法的推理和训练,并且与传统gpu相比更节能。然而,这些体系结构有各种各样的限制,这些限制会影响模型的准确性和性能。此外,深度学习应用程序的选择也带来了新的设计挑战,必须解决这些挑战才能实现高性能。在本文中,我们通过考虑卷积神经网络(cnn)和图神经网络(gnn)作为重要的应用领域,提出了基于reram的PIM架构的优势和挑战。我们还概述了可用于应对这些挑战的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Accurate PPA Modeling with Transfer Learning Mobileware: A High-Performance MobileNet Accelerator with Channel Stationary Dataflow A General Hardware and Software Co-Design Framework for Energy-Efficient Edge AI ToPro: A Topology Projector and Waveguide Router for Wavelength-Routed Optical Networks-on-Chip Early Validation of SoCs Security Architecture Against Timing Flows Using SystemC-based VPs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1