Learn Concepts in Multiple-Instance Learning with Diverse Density Framework Using Supervised Mean Shift

Ruo Du, Sheng Wang, Qiang Wu, Xiangjian He
{"title":"Learn Concepts in Multiple-Instance Learning with Diverse Density Framework Using Supervised Mean Shift","authors":"Ruo Du, Sheng Wang, Qiang Wu, Xiangjian He","doi":"10.1109/DICTA.2010.111","DOIUrl":null,"url":null,"abstract":"Many machine learning tasks can be achieved by using Multiple-instance learning (MIL) when the target features are ambiguous. As a general MIL framework, Diverse Density (DD) provides a way to learn those ambiguous features by maxmising the DD estimator, and the maximum of DD estimator is called a concept. However, modeling and finding multiple concepts is often difficult especially without prior knowledge of concept number, i.e., every positive bag may contain multiple coexistent and heterogeneous concepts but we do not know how many concepts exist. In this work, we present a new approach to find multiple concepts of DD by using an supervised mean shift algorithm. Unlike classic mean shift (an unsupervised clustering algorithm), our approach for the first time introduces the class label to feature point and each point differently contributes the mean shift iterations according to its label and position. A feature point derives from an MIL instance and takes corresponding bag label. Our supervised mean shift starts from positive points and converges to the local maxima that are close to the positive points and far away from the negative points. Experiments qualitatively indicate that our approach has better properties than other DD methods.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many machine learning tasks can be achieved by using Multiple-instance learning (MIL) when the target features are ambiguous. As a general MIL framework, Diverse Density (DD) provides a way to learn those ambiguous features by maxmising the DD estimator, and the maximum of DD estimator is called a concept. However, modeling and finding multiple concepts is often difficult especially without prior knowledge of concept number, i.e., every positive bag may contain multiple coexistent and heterogeneous concepts but we do not know how many concepts exist. In this work, we present a new approach to find multiple concepts of DD by using an supervised mean shift algorithm. Unlike classic mean shift (an unsupervised clustering algorithm), our approach for the first time introduces the class label to feature point and each point differently contributes the mean shift iterations according to its label and position. A feature point derives from an MIL instance and takes corresponding bag label. Our supervised mean shift starts from positive points and converges to the local maxima that are close to the positive points and far away from the negative points. Experiments qualitatively indicate that our approach has better properties than other DD methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用有监督均值移位在不同密度框架下学习概念
当目标特征不明确时,许多机器学习任务可以通过多实例学习来实现。作为一种通用的MIL框架,DD提供了一种通过最大化DD估计量来学习这些模糊特征的方法,DD估计量的最大值被称为概念。然而,建模和发现多个概念往往是困难的,特别是在没有概念数量的先验知识的情况下,即每个正袋可能包含多个共存和异构的概念,但我们不知道有多少概念存在。在这项工作中,我们提出了一种新的方法,通过使用监督均值移位算法来找到DD的多个概念。与经典的mean shift(一种无监督聚类算法)不同,我们的方法首次为特征点引入了类标签,每个点根据其标签和位置不同,对mean shift迭代的贡献不同。特征点派生自MIL实例并采用相应的袋标签。我们的监督均值漂移从正的点开始,收敛到离正的点很近,离负的点很远的局部最大值。定性实验表明,该方法比其他DD方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1