Research on Automatic Recognition Method of Icon Style

Pinjie Lv, Xinyue Wang, Chengqi Xue
{"title":"Research on Automatic Recognition Method of Icon Style","authors":"Pinjie Lv, Xinyue Wang, Chengqi Xue","doi":"10.1109/ICIT46573.2021.9453509","DOIUrl":null,"url":null,"abstract":"Icon is an important element in human-computer interaction, and icon style is the most intuitive visual expression of icon design. Aiming at the problem of material classification in the icon style design process, this paper proposes an icon style recognition method based on deep learning. This paper first established the icon style dataset, and then used Visual Geometry Group Network (VGGNet), AlexNet and self-built neural network for training. The results show that the accuracy of the trained icon style recognition model is up to 100%. In addition, convolved features were visualized for explaining the recognition progress. This method can help designers quickly collect and filter a large number of icons of the same type, sequentially improving and accelerating the icon design process.","PeriodicalId":193338,"journal":{"name":"2021 22nd IEEE International Conference on Industrial Technology (ICIT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT46573.2021.9453509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Icon is an important element in human-computer interaction, and icon style is the most intuitive visual expression of icon design. Aiming at the problem of material classification in the icon style design process, this paper proposes an icon style recognition method based on deep learning. This paper first established the icon style dataset, and then used Visual Geometry Group Network (VGGNet), AlexNet and self-built neural network for training. The results show that the accuracy of the trained icon style recognition model is up to 100%. In addition, convolved features were visualized for explaining the recognition progress. This method can help designers quickly collect and filter a large number of icons of the same type, sequentially improving and accelerating the icon design process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图标样式自动识别方法研究
图标是人机交互的重要元素,图标风格是图标设计最直观的视觉表达。针对图标样式设计过程中的材料分类问题,提出了一种基于深度学习的图标样式识别方法。本文首先建立了图标风格数据集,然后使用Visual Geometry Group Network (VGGNet)、AlexNet和自建神经网络进行训练。结果表明,所训练的图标样式识别模型的准确率达到100%。此外,将卷积特征可视化,以解释识别过程。这种方法可以帮助设计师快速收集和过滤大量相同类型的图标,从而逐步改进和加速图标设计过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Z Packed U-cell (ZPUC) topology, configuration of single DC Source single-phase and three-phase Multilevel Converter Optimal Utilization of the Dual-Active Bridge Converter with Bidirectional Charge Control Long Short-Term Memory based RNN for COVID-19 disease prediction Bispectrum and Kurtosis Analysis of Rotor Currents for the Detection of Field Winding Faults in Synchronous Motors Sequence-Frame Coupling Admittance Analysis and Stability of VSC Connected to Weak Grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1