Minimum Contrast Empirical Likelihood Manipulation Testing for Regression Discontinuity Design

Jun Ma, Hugo Jales, Zhengfei Yu
{"title":"Minimum Contrast Empirical Likelihood Manipulation Testing for Regression Discontinuity Design","authors":"Jun Ma, Hugo Jales, Zhengfei Yu","doi":"10.2139/ssrn.2925682","DOIUrl":null,"url":null,"abstract":"This paper proposes a simple empirical-likelihood-based inference method for discontinuity in density. In a regression discontinuity design (RDD), the continuity of the density of the assignment variable at the threshold is considered as a “nomanipulation” behavioral assumption, which is a testable implication of an identifying condition for the local treatment effect (LATE). Our approach is based on the first-order conditions obtained from a minimum contrast (MC) problem and complements Otsu et al. (2013)’s method. Our inference procedure has three main advantages. Firstly, it requires only one tuning parameter; secondly, it does not require concentrating out any nuisance parameter and therefore is very easily implementable; thirdly, its delicate second-order properties lead to a simple coverage-error-optimal (CE-optimal) bandwidth selection rule. We propose a data-driven CE-optimal bandwidth selector for use in practice. Results from Monte Carlo simulations are presented. Usefulness of our method is illustrated by empirical examples.","PeriodicalId":106740,"journal":{"name":"ERN: Other Econometrics: Econometric Model Construction","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric Model Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2925682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a simple empirical-likelihood-based inference method for discontinuity in density. In a regression discontinuity design (RDD), the continuity of the density of the assignment variable at the threshold is considered as a “nomanipulation” behavioral assumption, which is a testable implication of an identifying condition for the local treatment effect (LATE). Our approach is based on the first-order conditions obtained from a minimum contrast (MC) problem and complements Otsu et al. (2013)’s method. Our inference procedure has three main advantages. Firstly, it requires only one tuning parameter; secondly, it does not require concentrating out any nuisance parameter and therefore is very easily implementable; thirdly, its delicate second-order properties lead to a simple coverage-error-optimal (CE-optimal) bandwidth selection rule. We propose a data-driven CE-optimal bandwidth selector for use in practice. Results from Monte Carlo simulations are presented. Usefulness of our method is illustrated by empirical examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回归不连续设计的最小对比经验似然操作检验
本文提出了一种简单的基于经验似然的密度不连续推理方法。在回归不连续设计(RDD)中,分配变量密度在阈值处的连续性被认为是一种“操纵”行为假设,这是局部治疗效果识别条件(LATE)的可检验含义。我们的方法基于从最小对比度(MC)问题中获得的一阶条件,并补充了Otsu等人(2013)的方法。我们的推理程序有三个主要优点。首先,它只需要一个调优参数;其次,它不需要集中任何讨厌的参数,因此非常容易实现;第三,其微妙的二阶特性导致了简单的覆盖误差最优(ce -最优)带宽选择规则。我们提出了一个数据驱动的ce最优带宽选择器用于实践。给出了蒙特卡罗模拟的结果。通过实例说明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rank Determination in Tensor Factor Model A Toolkit for Robust Risk Assessment Using F-Divergences One-factor Hull-White Model Calibration for CVA - Part I: Instrument Selection With a Kink High-Dimensional Granger Causality Tests with an Application to VIX and News Selective Linear Segmentation For Detecting Relevant Parameter Changes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1