Exploring a service-based normal behaviour profiling system for botnet detection

Wei-ke Chen, Xiao Luo, A. N. Zincir-Heywood
{"title":"Exploring a service-based normal behaviour profiling system for botnet detection","authors":"Wei-ke Chen, Xiao Luo, A. N. Zincir-Heywood","doi":"10.23919/INM.2017.7987417","DOIUrl":null,"url":null,"abstract":"Effective detection of botnet traffic becomes difficult as the attackers use encrypted payload and dynamically changing port numbers (protocols) to bypass signature based detection and deep packet inspection. In this paper, we build a normal profiling-based botnet detection system using three unsupervised learning algorithms on service-based flow-based data, including self-organizing map, local outlier, and k-NN outlier factors. Evaluations on publicly available botnet data sets show that the proposed system could reach up to 91% detection rate with a false alarm rate of 5%.","PeriodicalId":119633,"journal":{"name":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/INM.2017.7987417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Effective detection of botnet traffic becomes difficult as the attackers use encrypted payload and dynamically changing port numbers (protocols) to bypass signature based detection and deep packet inspection. In this paper, we build a normal profiling-based botnet detection system using three unsupervised learning algorithms on service-based flow-based data, including self-organizing map, local outlier, and k-NN outlier factors. Evaluations on publicly available botnet data sets show that the proposed system could reach up to 91% detection rate with a false alarm rate of 5%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索基于服务的僵尸网络检测正常行为分析系统
由于攻击者使用加密的有效载荷和动态变化的端口号(协议)来绕过基于签名的检测和深度包检测,使得僵尸网络流量的有效检测变得困难。在本文中,我们使用三种无监督学习算法,包括自组织映射、局部离群值和k-NN离群因子,构建了一个基于正常分析的僵尸网络检测系统。对公开可用的僵尸网络数据集的评估表明,该系统的检测率高达91%,虚警率为5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A graph-based representation of relations in network security alert sharing platforms Network defence strategy evaluation: Simulation vs. live network Exchanging security events: Which and how many alerts can we aggregate? Honeypot testbed for network defence strategy evaluation SDQ: Enabling rapid QoE experimentation using Software Defined Networking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1