Atrial Fibrillation Episode Patterns and Their Influence on Detection Performance

Monika Butkuvienė, A. Petrėnas, Andrius Sološenko, A. Martín-Yebra, V. Marozas, L. Sörnmo
{"title":"Atrial Fibrillation Episode Patterns and Their Influence on Detection Performance","authors":"Monika Butkuvienė, A. Petrėnas, Andrius Sološenko, A. Martín-Yebra, V. Marozas, L. Sörnmo","doi":"10.23919/cinc53138.2021.9662847","DOIUrl":null,"url":null,"abstract":"Existing studies offer little insight on how atrial fibrillation (AF) detection performance is influenced by the properties of AF episode patterns. The aim of this study is to investigate the influence of AF burden and median AF episode length on detection performance. For this purpose, three types of AF detectors, using either information on rhythm, rhythm and morphology, or ECG segments, were investigated on 1-h simulated ECGs. Comparing AF burdens of 20% and 80% for a median episode length of 167 beats, the sensitivity of the rhythm- and morphology-based detector increases only slightly whereas the specificity drops from 99.5% to 93.3%. The corresponding figures of specificity are 99.0% and 90.6% for the rhythm-based detector; 88.1% and 70.7% for the segment-based detector. The influence of AF burden on specificity becomes even more pronounced for AF patterns with brief episodes (median episode length set to 30 beats). Therefore, patterns with briefepisodes and high AF burden imply higher demands on detection performance. Future research should focus on how well episode patterns are captured.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"348 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Existing studies offer little insight on how atrial fibrillation (AF) detection performance is influenced by the properties of AF episode patterns. The aim of this study is to investigate the influence of AF burden and median AF episode length on detection performance. For this purpose, three types of AF detectors, using either information on rhythm, rhythm and morphology, or ECG segments, were investigated on 1-h simulated ECGs. Comparing AF burdens of 20% and 80% for a median episode length of 167 beats, the sensitivity of the rhythm- and morphology-based detector increases only slightly whereas the specificity drops from 99.5% to 93.3%. The corresponding figures of specificity are 99.0% and 90.6% for the rhythm-based detector; 88.1% and 70.7% for the segment-based detector. The influence of AF burden on specificity becomes even more pronounced for AF patterns with brief episodes (median episode length set to 30 beats). Therefore, patterns with briefepisodes and high AF burden imply higher demands on detection performance. Future research should focus on how well episode patterns are captured.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
房颤发作模式及其对检测性能的影响
现有的研究对房颤(AF)的检测性能如何受到房颤发作模式的影响提供的见解很少。本研究的目的是探讨心房颤动负担和心房颤动中位发作时间对检测性能的影响。为此,在1小时的模拟心电图上研究了三种类型的AF检测器,它们分别使用节律、节律和形态学信息或心电段信息。对比中位发作长度为167次时20%和80%的房颤负担,基于节律和形态的检测器的灵敏度仅略有增加,而特异性从99.5%下降到93.3%。节律型检测器的特异性分别为99.0%和90.6%;基于片段的检测器为88.1%和70.7%。房颤负荷对特异性的影响对于短发作型房颤(平均发作时间为30次)更为明显。因此,短发作和高AF负担的模式意味着对检测性能的要求更高。未来的研究应该集中在如何很好地捕捉情节模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Hydroxychloroquine Dosage on the Occurrence of Arrhythmia in COVID-19 Infected Ventricle Guinea Pig ECG Changes under the Effect of New Drug Candidate TP28b Electrocardiographic Imaging of Sinus Rhythm in Pig Hearts Using Bayesian Maximum A Posteriori Estimation Sensitivity Analysis and Parameter Identification of a Cardiovascular Model in Aortic Stenosis Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1