Grigoris Michos, P. R. B. Monasterios, George C. Konstantopoulos
{"title":"Robust Distributed Control for DC Microgrids with System Constraints","authors":"Grigoris Michos, P. R. B. Monasterios, George C. Konstantopoulos","doi":"10.1109/MED54222.2022.9837215","DOIUrl":null,"url":null,"abstract":"This work proposes a distributed robust control architecture for meshed DC Microgrid networks. Each interlinking converter is modelled as a network node and is connected in parallel to a constant power load representing the network’s power consumption. Each node employs a local controller consisting of two parts; current regulation based on a modified version of the state-limiting PI and a distributed MPC driving the system to desired setpoints. We analytically prove each controller’s robustness to model variations caused by changes in both the power demand and the transmitted information among the subsystems. The concept of positive invariance sets and the inherent robustness properties of the nominal MPC are used to prove recursive feasibility of the optimal control problem and guarantee constraint satisfaction at all times. The stability proof of the cascaded node dynamics is based upon the emerging properties of both the state limiting PI and the distributed MPC design. Demonstration of the results is given in a simulated scenario.","PeriodicalId":354557,"journal":{"name":"2022 30th Mediterranean Conference on Control and Automation (MED)","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED54222.2022.9837215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This work proposes a distributed robust control architecture for meshed DC Microgrid networks. Each interlinking converter is modelled as a network node and is connected in parallel to a constant power load representing the network’s power consumption. Each node employs a local controller consisting of two parts; current regulation based on a modified version of the state-limiting PI and a distributed MPC driving the system to desired setpoints. We analytically prove each controller’s robustness to model variations caused by changes in both the power demand and the transmitted information among the subsystems. The concept of positive invariance sets and the inherent robustness properties of the nominal MPC are used to prove recursive feasibility of the optimal control problem and guarantee constraint satisfaction at all times. The stability proof of the cascaded node dynamics is based upon the emerging properties of both the state limiting PI and the distributed MPC design. Demonstration of the results is given in a simulated scenario.