Mammography Feature Selection using Rough set Theory

A. Pethalakshmi, K. Thangavel, P. Jaganathan
{"title":"Mammography Feature Selection using Rough set Theory","authors":"A. Pethalakshmi, K. Thangavel, P. Jaganathan","doi":"10.1109/ADCOM.2006.4289892","DOIUrl":null,"url":null,"abstract":"Microcalcification on X-ray mammogram is a significant mark for early detection of breast cancer. Texture analysis methods can be applied to detect clustered microcalcification in digitized mammograms. In order to improve the predictive accuracy of the classifier, the original number of feature set is reduced into smaller set using feature reduction techniques. In this paper rough set based reduction algorithms such as , Quickreduct (QR) and proposes Modified Quickreduct (MQR) are used to reduce the extracted features. The performance of both algorithms is compared. The Gray Level Co-occurrence Matrix (GLCM) is generated for each mammogram to extract the Haralick features as feature set. The reduction algorithms are tested on 161 pairs of digitized mammograms from Mammography Image Analysis Society (MIAS) database.","PeriodicalId":296627,"journal":{"name":"2006 International Conference on Advanced Computing and Communications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Advanced Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADCOM.2006.4289892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Microcalcification on X-ray mammogram is a significant mark for early detection of breast cancer. Texture analysis methods can be applied to detect clustered microcalcification in digitized mammograms. In order to improve the predictive accuracy of the classifier, the original number of feature set is reduced into smaller set using feature reduction techniques. In this paper rough set based reduction algorithms such as , Quickreduct (QR) and proposes Modified Quickreduct (MQR) are used to reduce the extracted features. The performance of both algorithms is compared. The Gray Level Co-occurrence Matrix (GLCM) is generated for each mammogram to extract the Haralick features as feature set. The reduction algorithms are tested on 161 pairs of digitized mammograms from Mammography Image Analysis Society (MIAS) database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粗糙集理论的乳房x光特征选择
乳房x线微钙化是早期发现乳腺癌的重要标志。纹理分析方法可用于检测数字化乳房x线照片中的聚类微钙化。为了提高分类器的预测精度,使用特征约简技术将原始特征集的数量缩减为更小的特征集。本文采用基于粗糙集的快速约简算法(quickreduce, QR)和改进快速约简算法(MQR)对提取的特征进行约简。比较了两种算法的性能。对每张乳房x光片生成灰度共生矩阵(GLCM),提取哈拉里克特征作为特征集。在来自乳腺摄影图像分析协会(MIAS)数据库的161对数字化乳房x线照片上测试了这些约简算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message Integrity in the World Wide Web: Use of Nested Hash Function and a Fast Stream Cipher Feature Extraction Learning for Stereovision Based Robot Navigation System Semantics for a Distributed Programming Language Using SACS and Weakest Pre-Conditions On Evaluating Obfuscatory Strength of Alias-based Transforms using Static Analysis A Multi-Algorithmic Face Recognition System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1