Saliency detection for stereoscopic images

Yuming Fang, Junle Wang, Manish Narwaria, P. Callet, Weisi Lin
{"title":"Saliency detection for stereoscopic images","authors":"Yuming Fang, Junle Wang, Manish Narwaria, P. Callet, Weisi Lin","doi":"10.1109/VCIP.2013.6706346","DOIUrl":null,"url":null,"abstract":"Saliency detection techniques have been widely used in various 2D multimedia processing applications. Currently, the emerging applications of stereoscopic display require new saliency detection models for stereoscopic images. Different from saliency detection for 2D images, depth features have to be taken into account in saliency detection for stereoscopic images. In this paper, we propose a new stereoscopic saliency detection framework based on the feature contrast of color, intensity, texture, and depth. Four types of features including color, luminance, texture, and depth are extracted from DC-T coefficients to represent the energy for image patches. A Gaussian model of the spatial distance between image patches is adopted for the consideration of local and global contrast calculation. A new fusion method is designed to combine the feature maps for computing the final saliency map for stereoscopic images. Experimental results on a recent eye tracking database show the superior performance of the proposed method over other existing ones in saliency estimation for 3D images.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"159","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 159

Abstract

Saliency detection techniques have been widely used in various 2D multimedia processing applications. Currently, the emerging applications of stereoscopic display require new saliency detection models for stereoscopic images. Different from saliency detection for 2D images, depth features have to be taken into account in saliency detection for stereoscopic images. In this paper, we propose a new stereoscopic saliency detection framework based on the feature contrast of color, intensity, texture, and depth. Four types of features including color, luminance, texture, and depth are extracted from DC-T coefficients to represent the energy for image patches. A Gaussian model of the spatial distance between image patches is adopted for the consideration of local and global contrast calculation. A new fusion method is designed to combine the feature maps for computing the final saliency map for stereoscopic images. Experimental results on a recent eye tracking database show the superior performance of the proposed method over other existing ones in saliency estimation for 3D images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
立体图像的显著性检测
显著性检测技术已广泛应用于各种二维多媒体处理中。目前,新兴的立体显示应用需要新的立体图像显著性检测模型。与二维图像的显著性检测不同,立体图像的显著性检测需要考虑深度特征。本文提出了一种基于颜色、强度、纹理和深度特征对比的立体显著性检测框架。从DC-T系数中提取颜色、亮度、纹理和深度四种特征来表示图像patch的能量。为了考虑局部和全局对比度计算,采用图像斑块之间空间距离的高斯模型。设计了一种新的融合方法,结合特征图计算最终的立体图像显著性图。在最近的眼动追踪数据库上的实验结果表明,该方法在三维图像的显著性估计方面优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New motherwavelet for pattern detection in IR image Improved disparity vector derivation in 3D-HEVC Learning non-negative locality-constrained Linear Coding for human action recognition Wavelet based smoke detection method with RGB Contrast-image and shape constrain Joint image denoising using self-similarity based low-rank approximations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1