Joseph Kamel, Farah Haidar, I. B. Jemaa, Arnaud Kaiser, B. Lonc, P. Urien
{"title":"A Misbehavior Authority System for Sybil Attack Detection in C-ITS","authors":"Joseph Kamel, Farah Haidar, I. B. Jemaa, Arnaud Kaiser, B. Lonc, P. Urien","doi":"10.1109/UEMCON47517.2019.8993045","DOIUrl":null,"url":null,"abstract":"Global misbehavior detection is an important backend mechanism in Cooperative Intelligent Transport Systems (C-ITS). It is based on the local misbehavior detection information sent by Vehicle's On-Board Units (OBUs) and by Road-Side Units (RSUs) called Misbehavior Reports (MBRs) to the Misbehavior Authority (MA). By analyzing these reports, the MA provides more accurate and robust misbehavior detection results. Sybil attacks pose a significant threat to the C-ITS systems. Their detection and identification may be inaccurate and confusing. In this work, we propose a Machine Learning (ML) based solution for the internal detection process of the MA. We show through extensive simulation that our solution is able to precisely identify the type of the Sybil attack and provide promising detection accuracy results.","PeriodicalId":187022,"journal":{"name":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON47517.2019.8993045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Global misbehavior detection is an important backend mechanism in Cooperative Intelligent Transport Systems (C-ITS). It is based on the local misbehavior detection information sent by Vehicle's On-Board Units (OBUs) and by Road-Side Units (RSUs) called Misbehavior Reports (MBRs) to the Misbehavior Authority (MA). By analyzing these reports, the MA provides more accurate and robust misbehavior detection results. Sybil attacks pose a significant threat to the C-ITS systems. Their detection and identification may be inaccurate and confusing. In this work, we propose a Machine Learning (ML) based solution for the internal detection process of the MA. We show through extensive simulation that our solution is able to precisely identify the type of the Sybil attack and provide promising detection accuracy results.