S. Divanbeigi, E. Aditya, Zhongpin Wang, M. Olbrich
{"title":"Enabling Complex Stimuli in Accelerated Mixed-Signal Simulation","authors":"S. Divanbeigi, E. Aditya, Zhongpin Wang, M. Olbrich","doi":"10.1145/3316781.3317815","DOIUrl":null,"url":null,"abstract":"In the era of advancing technology, increasing circuit complexity requires faster simulators for the verification step. The piece-wise linear simulation approach provides an efficient and accurate solution. In this paper, a state-of-the-art mixed-signal simulator is explained. The approach is extended to new exponential and quadratic stimuli. This requires a comprehensive derivation of mathematical equations, which remove the need for computationally expensive evaluation. The new stimuli are simulated in several circuits and compared to a conventional simulator. The result shows significant run-time acceleration with high accuracy. Therefore, it meets the industrial requirement, which demands simulation with various input forms and non-linear components.","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3317815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In the era of advancing technology, increasing circuit complexity requires faster simulators for the verification step. The piece-wise linear simulation approach provides an efficient and accurate solution. In this paper, a state-of-the-art mixed-signal simulator is explained. The approach is extended to new exponential and quadratic stimuli. This requires a comprehensive derivation of mathematical equations, which remove the need for computationally expensive evaluation. The new stimuli are simulated in several circuits and compared to a conventional simulator. The result shows significant run-time acceleration with high accuracy. Therefore, it meets the industrial requirement, which demands simulation with various input forms and non-linear components.