Sampling-based selectivity estimation for joins using augmented frequent value statistics

P. Haas, A. Swami
{"title":"Sampling-based selectivity estimation for joins using augmented frequent value statistics","authors":"P. Haas, A. Swami","doi":"10.1109/ICDE.1995.380361","DOIUrl":null,"url":null,"abstract":"We compare empirically the cost of estimating the selectivity of a star join using the sampling-based t-cross procedure to the cost of computing the join and obtaining the exact answer. The relative cost of sampling can be excessive when a join attribute value exhibits \"heterogeneous skew.\" To alleviate this problem, we propose Algorithm TCM, a modified version of t-cross that incorporates \"augmented frequent value\" (AFV) statistics. We provide a sampling-based method for estimating AFV statistics that does not require indexes on attribute values, requires only one pass though each relation, and uses an amount of memory much smaller than the size of a relation. Our experiments show that the use of estimated AFV statistics can reduce the relative cost of sampling by orders of magnitude. We also show that use of estimated AFV statistics can reduce the relative error of the classical System R selectivity formula.<<ETX>>","PeriodicalId":184415,"journal":{"name":"Proceedings of the Eleventh International Conference on Data Engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.1995.380361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

We compare empirically the cost of estimating the selectivity of a star join using the sampling-based t-cross procedure to the cost of computing the join and obtaining the exact answer. The relative cost of sampling can be excessive when a join attribute value exhibits "heterogeneous skew." To alleviate this problem, we propose Algorithm TCM, a modified version of t-cross that incorporates "augmented frequent value" (AFV) statistics. We provide a sampling-based method for estimating AFV statistics that does not require indexes on attribute values, requires only one pass though each relation, and uses an amount of memory much smaller than the size of a relation. Our experiments show that the use of estimated AFV statistics can reduce the relative cost of sampling by orders of magnitude. We also show that use of estimated AFV statistics can reduce the relative error of the classical System R selectivity formula.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用增广频繁值统计的基于抽样的连接选择性估计
我们根据经验比较了使用基于抽样的t交叉过程估计星型连接的选择性的成本与计算连接并获得确切答案的成本。当连接属性值显示“异构倾斜”时,采样的相对成本可能会过高。为了缓解这个问题,我们提出了TCM算法,这是一种改进的t-cross算法,它包含了“增广频繁值”(AFV)统计。我们提供了一种基于抽样的方法来估计AFV统计信息,该方法不需要属性值上的索引,只需要通过每个关系一次,并且使用的内存量比关系的大小小得多。我们的实验表明,使用估计的AFV统计量可以将采样的相对成本降低几个数量级。我们还表明,使用估计的AFV统计量可以减少经典系统R选择公式的相对误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Translation of object-oriented queries to relational queries A transaction transformation approach to active rule processing Design, implementation and evaluation of SCORE (a system for content based retrieval of pictures) A structure based schema integration methodology An evaluation of sampling-based size estimation methods for selections in database systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1