Multi-MelGAN Voice Conversion for the Creation of Under-Resourced Child Speech Synthesis

Avashna Govender, D. Paul
{"title":"Multi-MelGAN Voice Conversion for the Creation of Under-Resourced Child Speech Synthesis","authors":"Avashna Govender, D. Paul","doi":"10.23919/IST-Africa56635.2022.9845637","DOIUrl":null,"url":null,"abstract":"Voice conversion (VC) is an important technique for the development of text-to-speech voices in the use case of lacking speech resources. VC can convert an audio signal from a source speaker to a specific target speaker whilst maintaining the linguistic information. The benefit of VC is that you only require a small amount of target data which therefore makes it possible to build high quality text-to-speech voices using only a limited amount of speech data. In this work, we implement VC using a mel-spectrogram Generative Adversarial Network called MelGAN-VC. This technique does not require parallel data and has been proven successful on as little as 1 hour of target speech data. The aim of this work was to build child voices by modifying the original one-to-one MelGAN-VC model to a many-to-many model and determine if there is any gain in using such a model. We found that using a many-to-many model performs better than the baseline one-to-one model in terms of speaker similarity and the naturalness of the output speech when using only 24 minutes of speech data.","PeriodicalId":142887,"journal":{"name":"2022 IST-Africa Conference (IST-Africa)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IST-Africa Conference (IST-Africa)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IST-Africa56635.2022.9845637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Voice conversion (VC) is an important technique for the development of text-to-speech voices in the use case of lacking speech resources. VC can convert an audio signal from a source speaker to a specific target speaker whilst maintaining the linguistic information. The benefit of VC is that you only require a small amount of target data which therefore makes it possible to build high quality text-to-speech voices using only a limited amount of speech data. In this work, we implement VC using a mel-spectrogram Generative Adversarial Network called MelGAN-VC. This technique does not require parallel data and has been proven successful on as little as 1 hour of target speech data. The aim of this work was to build child voices by modifying the original one-to-one MelGAN-VC model to a many-to-many model and determine if there is any gain in using such a model. We found that using a many-to-many model performs better than the baseline one-to-one model in terms of speaker similarity and the naturalness of the output speech when using only 24 minutes of speech data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
资源不足儿童语音合成的多melgan语音转换
语音转换(VC)是在缺乏语音资源的情况下实现文本语音转换的一项重要技术。VC可以在保持语言信息的同时,将源说话者的音频信号转换为特定的目标说话者。VC的好处是,您只需要少量的目标数据,因此可以使用有限的语音数据构建高质量的文本到语音语音。在这项工作中,我们使用称为MelGAN-VC的梅尔谱图生成对抗网络来实现VC。该技术不需要并行数据,并且已被证明在1小时的目标语音数据上是成功的。这项工作的目的是通过将原始的一对一MelGAN-VC模型修改为多对多模型来构建儿童声音,并确定使用这种模型是否有任何好处。我们发现,当只使用24分钟的语音数据时,在说话人相似度和输出语音的自然度方面,使用多对多模型比基线一对一模型表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Smart City Maturity Assessment Model for South African Municipalities Design of a Tomato Harvesting Robot for Agricultural Small and Medium Enterprises (SMEs) Case Study on Data Collection of Kreol Morisien, a Low-Resourced Creole Language The Development of a Livestock Farm Management Information System (LFMIS) Equitable Access to eLearning during Covid-19 Pandemic and beyond. A Comparative Analysis between Rural and Urban Schools in Zimbabwe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1