{"title":"Few-Shot Classification With Cross-Feature Fusion","authors":"Guohui Yao, Min Li, Dawei Song","doi":"10.1109/ICCCS57501.2023.10151269","DOIUrl":null,"url":null,"abstract":"Most existing methods for few-shot image classification treat the support features and query features separately, and the category of a query image is determined based on its similarity to the support images. However, the relationships between the query features and support features are often ignored. In this paper, we propose a strategy that exploits the relationships between query and support features and give more weights to the highly related features. A cross-feature fusion method is further proposed to combine with metric learning to reduce overfitting. Extensive experiments on a wide range of datasets show that our method has achieved advanced results.","PeriodicalId":266168,"journal":{"name":"2023 8th International Conference on Computer and Communication Systems (ICCCS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS57501.2023.10151269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Most existing methods for few-shot image classification treat the support features and query features separately, and the category of a query image is determined based on its similarity to the support images. However, the relationships between the query features and support features are often ignored. In this paper, we propose a strategy that exploits the relationships between query and support features and give more weights to the highly related features. A cross-feature fusion method is further proposed to combine with metric learning to reduce overfitting. Extensive experiments on a wide range of datasets show that our method has achieved advanced results.