Ensemble Classification Method Based on Truth Discovery

Yuxin Jin, Ze Yang, Ying He, Xianyu Bao, Gongqing Wu
{"title":"Ensemble Classification Method Based on Truth Discovery","authors":"Yuxin Jin, Ze Yang, Ying He, Xianyu Bao, Gongqing Wu","doi":"10.1109/ICBK.2019.00024","DOIUrl":null,"url":null,"abstract":"Classification is a hot topic in such fields as machine learning and data mining. The traditional approach of machine learning is to find a classifier closest to the real classification function, while ensemble classification is to integrate the results of base classifiers, then make an overall prediction. Compared to using a single classifier, ensemble classification can significantly improve the generalization of the learning system in most cases. However, the existing ensemble classification methods rarely consider the weight of the classifier, and there are few methods to consider updating the weights dynamically. In this paper, we are inspired by the idea of truth discovery and propose a new ensemble classification method based on the truth discovery (named ECTD). As far as we know, we are the first to apply the idea of truth discovery in the field of ensemble learning. Experimental results demonstrate that the proposed method performs well in ensemble classification.","PeriodicalId":383917,"journal":{"name":"2019 IEEE International Conference on Big Knowledge (ICBK)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2019.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classification is a hot topic in such fields as machine learning and data mining. The traditional approach of machine learning is to find a classifier closest to the real classification function, while ensemble classification is to integrate the results of base classifiers, then make an overall prediction. Compared to using a single classifier, ensemble classification can significantly improve the generalization of the learning system in most cases. However, the existing ensemble classification methods rarely consider the weight of the classifier, and there are few methods to consider updating the weights dynamically. In this paper, we are inspired by the idea of truth discovery and propose a new ensemble classification method based on the truth discovery (named ECTD). As far as we know, we are the first to apply the idea of truth discovery in the field of ensemble learning. Experimental results demonstrate that the proposed method performs well in ensemble classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于真相发现的集成分类方法
分类是机器学习和数据挖掘等领域的热门话题。传统的机器学习方法是寻找最接近真实分类函数的分类器,而集成分类是将基分类器的结果进行整合,然后进行整体预测。与使用单一分类器相比,集成分类在大多数情况下可以显著提高学习系统的泛化能力。然而,现有的集成分类方法很少考虑分类器的权值,也很少考虑权值的动态更新。本文受真值发现思想的启发,提出了一种新的基于真值发现的集成分类方法(ECTD)。据我们所知,我们是第一个将真理发现的思想应用于集成学习领域的。实验结果表明,该方法具有较好的集成分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Two-Stage Clustering Algorithm Based on Improved K-Means and Density Peak Clustering Matrix Profile XX: Finding and Visualizing Time Series Motifs of All Lengths using the Matrix Profile A Spatial Co-location Pattern Mining Algorithm Without Distance Thresholds Adaptive Structural Co-regularization for Unsupervised Multi-view Feature Selection Which Patient to Treat Next? Probabilistic Stream-Based Reasoning for Decision Support and Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1