Dynamic dispatching for re-entrant production lines — A deep learning approach

Fang-Yi Zhou, Cheng-Hung Wu, Cheng-Juei Yu
{"title":"Dynamic dispatching for re-entrant production lines — A deep learning approach","authors":"Fang-Yi Zhou, Cheng-Hung Wu, Cheng-Juei Yu","doi":"10.1109/COASE.2017.8256238","DOIUrl":null,"url":null,"abstract":"This study presents a dynamic dispatching method for re-entrant production systems by combing dynamic programming (DP) with deep learning. First, we use DP to derive optimal value functions and optimal dispatching policies in a small number of numerical cases. The optimal value functions are then applied to train a deep neural network (DNN). The DNN builds an efficient estimation engine for optimal value functions. Since optimal dispatching decisions can be considered a compressed feature of the optimal value function, the value function estimated by DNN can be quickly mapped to dynamic dispatching policies. The accuracy of DNN dispatching policies is validated by the k-fold cross-validation (k-cv) test in a wide variety of re-entrant systems. Our preliminary investigation shows the potential of DNN in instantaneously generating accurate dynamic dispatching policies.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study presents a dynamic dispatching method for re-entrant production systems by combing dynamic programming (DP) with deep learning. First, we use DP to derive optimal value functions and optimal dispatching policies in a small number of numerical cases. The optimal value functions are then applied to train a deep neural network (DNN). The DNN builds an efficient estimation engine for optimal value functions. Since optimal dispatching decisions can be considered a compressed feature of the optimal value function, the value function estimated by DNN can be quickly mapped to dynamic dispatching policies. The accuracy of DNN dispatching policies is validated by the k-fold cross-validation (k-cv) test in a wide variety of re-entrant systems. Our preliminary investigation shows the potential of DNN in instantaneously generating accurate dynamic dispatching policies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新进入生产线的动态调度——一种深度学习方法
将动态规划与深度学习相结合,提出了一种可再入生产系统的动态调度方法。首先,在少数数值情况下,我们使用DP推导出最优值函数和最优调度策略。然后应用最优值函数来训练深度神经网络(DNN)。深度神经网络为最优值函数构建了一个高效的估计引擎。由于最优调度决策可以看作是最优值函数的压缩特征,因此DNN估计的值函数可以快速映射到动态调度策略。DNN调度策略的准确性通过k-fold交叉验证(k-cv)测试在各种各样的重入系统中得到验证。我们的初步研究显示深度神经网络在即时生成准确的动态调度策略方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on performance evaluation and status-based decision for cyber-physical production systems Optimization of deterministic timed weighted marked graphs An optimization-simulation approach for long term care structure assignment problem for elderly people Stochastic simulation of clinical pathways from raw health databases A circuit-breaker use-case operated by a humanoid in aircraft manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1