Efficient mining of frequent itemsets in social network data based on MapReduce framework

Zahra Farzanyar, N. Cercone
{"title":"Efficient mining of frequent itemsets in social network data based on MapReduce framework","authors":"Zahra Farzanyar, N. Cercone","doi":"10.1145/2492517.2500301","DOIUrl":null,"url":null,"abstract":"Social Networks promote information sharing between people everywhere and at all times. Mining data produced in this data-rich environment can be extremely useful. Frequent itemset mining plays an important role in mining associations, correlations, sequential patterns, causality, episodes, multidimensional patterns, max-patterns, partial periodicity, emerging patterns, and many other significant data mining tasks in social networks. With the exponential growth of social network data towards a terabyte or more, most of the traditional frequent itemset mining algorithms become ineffective due to either huge resource requirements or large communications overhead. Cloud computing has proved that processing very large datasets over commodity clusters can be done by providing the right programming model. As a parallel programming model, MapReduce, one of most important techniques for cloud computing, has emerged in the mining of datasets of terabyte scale or larger on clusters of computers. In this paper, we propose an efficient frequent itemset mining algorithm, called IMRApriori, based on MapReduce framework which deals with Hadoop cloud, a parallel store and computing platform. The paper demonstrates experimental results to corroborate the theoretical claims.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2500301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

Social Networks promote information sharing between people everywhere and at all times. Mining data produced in this data-rich environment can be extremely useful. Frequent itemset mining plays an important role in mining associations, correlations, sequential patterns, causality, episodes, multidimensional patterns, max-patterns, partial periodicity, emerging patterns, and many other significant data mining tasks in social networks. With the exponential growth of social network data towards a terabyte or more, most of the traditional frequent itemset mining algorithms become ineffective due to either huge resource requirements or large communications overhead. Cloud computing has proved that processing very large datasets over commodity clusters can be done by providing the right programming model. As a parallel programming model, MapReduce, one of most important techniques for cloud computing, has emerged in the mining of datasets of terabyte scale or larger on clusters of computers. In this paper, we propose an efficient frequent itemset mining algorithm, called IMRApriori, based on MapReduce framework which deals with Hadoop cloud, a parallel store and computing platform. The paper demonstrates experimental results to corroborate the theoretical claims.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MapReduce框架的社交网络数据频繁项集高效挖掘
社交网络促进了人们随时随地的信息共享。挖掘在这个数据丰富的环境中产生的数据可能非常有用。频繁项集挖掘在挖掘社会网络中的关联、相关性、顺序模式、因果关系、情节、多维模式、最大模式、部分周期性、新兴模式和许多其他重要的数据挖掘任务中起着重要作用。随着社交网络数据呈指数级增长,达到tb或更多,大多数传统的频繁项集挖掘算法由于巨大的资源需求或巨大的通信开销而变得无效。云计算已经证明,通过提供正确的编程模型,可以在商品集群上处理非常大的数据集。作为一种并行编程模型,MapReduce作为云计算最重要的技术之一,已经出现在tb级或更大的计算机集群数据集的挖掘中。本文提出了一种高效的频繁项集挖掘算法IMRApriori,该算法基于MapReduce框架,处理并行存储和计算平台Hadoop云。本文用实验结果验证了理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical analysis and implications of SNS search in under-developed countries Identifying unreliable sources of skill and competency information Assessing group cohesion in homophily networks Exploiting online social data in ontology learning for event tracking and emergency response Event identification for social streams using keyword-based evolving graph sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1