Architectural characterization of XQuery workloads on modern processors

Rubao Lee, Bihui Duan, Taoying Liu
{"title":"Architectural characterization of XQuery workloads on modern processors","authors":"Rubao Lee, Bihui Duan, Taoying Liu","doi":"10.1145/1363189.1363199","DOIUrl":null,"url":null,"abstract":"As XQuery rapidly emerges as the standard for querying XML documents, it is very important to understand the architectural characteristics and behaviors of such workloads. A lot of efforts are focused on the implementation, optimization, and evaluation of XQuery tools. However, few or no prior work studies the architectural and memory system behaviors of XQuery workloads on modern hardware platforms. This makes it unclear whether modern CPU techniques, such as the multi-level caches and hardware branch predictors, can support such workloads well enough.\n This paper presents a detailed characterization of the architectural behavior of XQuery workloads. We examine four XQuery tools on three hardware platforms (AMD, Intel, and Sun) using well-designed XQuery queries. We report measured architectural data, including the L1/L2 cache misses, TLB misses, and branch mispredictions. We believe that the information will be useful in understanding XQuery workloads and analyzing the potential architectural optimization opportunities of improving XQuery performance.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1363189.1363199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As XQuery rapidly emerges as the standard for querying XML documents, it is very important to understand the architectural characteristics and behaviors of such workloads. A lot of efforts are focused on the implementation, optimization, and evaluation of XQuery tools. However, few or no prior work studies the architectural and memory system behaviors of XQuery workloads on modern hardware platforms. This makes it unclear whether modern CPU techniques, such as the multi-level caches and hardware branch predictors, can support such workloads well enough. This paper presents a detailed characterization of the architectural behavior of XQuery workloads. We examine four XQuery tools on three hardware platforms (AMD, Intel, and Sun) using well-designed XQuery queries. We report measured architectural data, including the L1/L2 cache misses, TLB misses, and branch mispredictions. We believe that the information will be useful in understanding XQuery workloads and analyzing the potential architectural optimization opportunities of improving XQuery performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
现代处理器上XQuery工作负载的体系结构特征
随着XQuery迅速成为查询XML文档的标准,理解这种工作负载的体系结构特征和行为非常重要。很多工作都集中在XQuery工具的实现、优化和评估上。然而,很少或没有先前的工作研究现代硬件平台上XQuery工作负载的体系结构和内存系统行为。这使得现代CPU技术(如多级缓存和硬件分支预测器)是否能够很好地支持这种工作负载变得不清楚。本文详细描述了XQuery工作负载的体系结构行为。我们使用设计良好的XQuery查询,在三种硬件平台(AMD、Intel和Sun)上研究四种XQuery工具。我们报告测量的体系结构数据,包括L1/L2缓存缺失、TLB缺失和分支错误预测。我们相信这些信息对于理解XQuery工作负载和分析改进XQuery性能的潜在架构优化机会非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On testing persistent-memory-based software SIMD-accelerated regular expression matching FPGA-accelerated group-by aggregation using synchronizing caches Customized OS support for data-processing Larger-than-memory data management on modern storage hardware for in-memory OLTP database systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1