Hierarchical Variational Network for User-Diversified & Query-Focused Video Summarization

Pin Jiang, Yahong Han
{"title":"Hierarchical Variational Network for User-Diversified & Query-Focused Video Summarization","authors":"Pin Jiang, Yahong Han","doi":"10.1145/3323873.3325040","DOIUrl":null,"url":null,"abstract":"This paper focuses on the query-focused video summarization, which is an extended task of video summarization and aims to automatically generate user-oriented summary by highlighting frames/shots relevant to the query. This task is different from traditional video summarization in paying attention to users' subjectivity through queries. Diversity is a recognized important property in video summarization. However, existing methods only consider diversity as the dissimilarity between frames/shots which is far from user-oriented summarization. Users' different understandings of video should be an important source of diversity, reflected in the process of eliminating query-unrelated redundancy. To this end, this paper explores user-diversified & query-focused video summarization via a well-devised hierarchical variational network called HVN. HVN has three distinctive characteristics: (i) it has a hierarchical structure to model query-related long-range temporal dependency; (ii) it employs diverse attention mechanisms to encode query-related and context-important information and makes them balanced; (iii) it employs a multilevel self-attention module and a variational autoencoder module to add user-oriented diversity and stochastic factors. Experimental results demonstrate that HVN not only outperforms the state-of-the-arts but also improves the user-oriented diversity to some extent.","PeriodicalId":149041,"journal":{"name":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323873.3325040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper focuses on the query-focused video summarization, which is an extended task of video summarization and aims to automatically generate user-oriented summary by highlighting frames/shots relevant to the query. This task is different from traditional video summarization in paying attention to users' subjectivity through queries. Diversity is a recognized important property in video summarization. However, existing methods only consider diversity as the dissimilarity between frames/shots which is far from user-oriented summarization. Users' different understandings of video should be an important source of diversity, reflected in the process of eliminating query-unrelated redundancy. To this end, this paper explores user-diversified & query-focused video summarization via a well-devised hierarchical variational network called HVN. HVN has three distinctive characteristics: (i) it has a hierarchical structure to model query-related long-range temporal dependency; (ii) it employs diverse attention mechanisms to encode query-related and context-important information and makes them balanced; (iii) it employs a multilevel self-attention module and a variational autoencoder module to add user-oriented diversity and stochastic factors. Experimental results demonstrate that HVN not only outperforms the state-of-the-arts but also improves the user-oriented diversity to some extent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向用户多样化和以查询为中心的视频摘要层次变分网络
本文研究的是面向查询的视频摘要,它是视频摘要的扩展任务,旨在通过突出显示与查询相关的帧/镜头,自动生成面向用户的摘要。该任务与传统的视频摘要不同,通过查询关注用户的主观性。多样性是视频摘要中公认的重要属性。然而,现有的方法只将多样性视为帧/镜头之间的不相似性,这与用户导向的总结相去甚远。用户对视频的不同理解应该是多样性的重要来源,体现在消除查询无关冗余的过程中。为此,本文通过一个精心设计的称为HVN的分层变分网络探索了用户多样化和以查询为中心的视频摘要。HVN有三个显著的特点:(i)它有一个层次结构来模拟与查询相关的长期时间依赖性;(ii)采用不同的注意力机制,对与查询相关的和与上下文相关的信息进行编码,并使它们保持平衡;(3)采用多级自关注模块和变分自编码器模块,增加了面向用户的多样性和随机因素。实验结果表明,HVN在一定程度上提高了面向用户的分集性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EAGER Multimodal Multimedia Retrieval with vitrivr RobustiQ: A Robust ANN Search Method for Billion-scale Similarity Search on GPUs Improving What Cross-Modal Retrieval Models Learn through Object-Oriented Inter- and Intra-Modal Attention Networks DeepMarks: A Secure Fingerprinting Framework for Digital Rights Management of Deep Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1