Behavior-driven Load Testing Using Contextual Knowledge - Approach and Experiences

Henning Schulz, Dusan Okanovic, A. Hoorn, Vincenzo Ferme, C. Pautasso
{"title":"Behavior-driven Load Testing Using Contextual Knowledge - Approach and Experiences","authors":"Henning Schulz, Dusan Okanovic, A. Hoorn, Vincenzo Ferme, C. Pautasso","doi":"10.1145/3297663.3309674","DOIUrl":null,"url":null,"abstract":"Load testing is widely considered a meaningful technique for performance quality assurance. However, empirical studies reveal that in practice, load testing is not applied systematically, due to the sound expert knowledge required to specify, implement, and execute load tests. Our Behavior-driven Load Testing (BDLT) approach eases load test specification and execution for users with no or little expert knowledge. It allows a user to describe a load test in a template-based natural language and to rely on an automated framework to execute the test. Utilizing the system's contextual knowledge such as workload-influencing events, the framework automatically determines the workload and test configuration. We investigated the applicability of our approach in an industrial case study, where we were able to express four load test concerns using BDLT and received positive feedback from our industrial partner. They understood the BDLT definitions well and proposed further applications, such as the usage for software quality acceptance criteria.","PeriodicalId":273447,"journal":{"name":"Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3297663.3309674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Load testing is widely considered a meaningful technique for performance quality assurance. However, empirical studies reveal that in practice, load testing is not applied systematically, due to the sound expert knowledge required to specify, implement, and execute load tests. Our Behavior-driven Load Testing (BDLT) approach eases load test specification and execution for users with no or little expert knowledge. It allows a user to describe a load test in a template-based natural language and to rely on an automated framework to execute the test. Utilizing the system's contextual knowledge such as workload-influencing events, the framework automatically determines the workload and test configuration. We investigated the applicability of our approach in an industrial case study, where we were able to express four load test concerns using BDLT and received positive feedback from our industrial partner. They understood the BDLT definitions well and proposed further applications, such as the usage for software quality acceptance criteria.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用上下文知识的行为驱动负载测试-方法和经验
负载测试被广泛认为是一种有意义的性能质量保证技术。然而,实证研究表明,在实践中,由于需要完善的专家知识来指定、实施和执行负载测试,负载测试并没有得到系统的应用。我们的行为驱动负载测试(BDLT)方法为没有或很少有专业知识的用户简化了负载测试规范和执行。它允许用户用基于模板的自然语言描述负载测试,并依赖于自动化框架来执行测试。利用系统的上下文知识,例如工作负载影响事件,框架自动确定工作负载和测试配置。我们在一个工业案例研究中调查了我们的方法的适用性,我们能够使用BDLT表达四个负载测试关注点,并从我们的工业合作伙伴那里得到了积极的反馈。他们很好地理解了BDLT的定义,并提出了进一步的应用,例如软件质量验收标准的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Evaluation of Multi-Path TCP for Data Center and Cloud Workloads Cachematic - Automatic Invalidation in Application-Level Caching Systems Memory Centric Characterization and Analysis of SPEC CPU2017 Suite Evaluating Characteristics of CUDA Communication Primitives on High-Bandwidth Interconnects Yardstick: A Benchmark for Minecraft-like Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1