{"title":"Multi-model optimization with discounted reward and budget constraint","authors":"Jixuan Shi, Mei Chen","doi":"10.1145/3208788.3208796","DOIUrl":null,"url":null,"abstract":"Multiple arm bandit algorithm is widely used in gaming, gambling, policy generation, and artificial intelligence projects and gets more attention recently. In this paper, we explore non-stationary reward MAB problem with limited query budget. An upper confidence bound (UCB) based algorithm for the discounted MAB budget finite problem, which uses reward-cost ratio instead of arm rewards in discount empirical average. In order to estimate the instantaneous expected reward-cost ratio, the DUCB-BF policy averages past rewards with a discount factor giving more weight to recent observations. Theoretical regret bound is established with proof to be over-performed than other MAB algorithms. A real application on maintenance recovery models refinement is explored. Results comparison on 4 different MAB algorithms and DUCB-BF algorithm yields lowest regret as expected.","PeriodicalId":211585,"journal":{"name":"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208788.3208796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Multiple arm bandit algorithm is widely used in gaming, gambling, policy generation, and artificial intelligence projects and gets more attention recently. In this paper, we explore non-stationary reward MAB problem with limited query budget. An upper confidence bound (UCB) based algorithm for the discounted MAB budget finite problem, which uses reward-cost ratio instead of arm rewards in discount empirical average. In order to estimate the instantaneous expected reward-cost ratio, the DUCB-BF policy averages past rewards with a discount factor giving more weight to recent observations. Theoretical regret bound is established with proof to be over-performed than other MAB algorithms. A real application on maintenance recovery models refinement is explored. Results comparison on 4 different MAB algorithms and DUCB-BF algorithm yields lowest regret as expected.