{"title":"Binary Subblock Energy-Constrained Codes: Knuth’s Balancing and Sequence Replacement Techniques","authors":"T. T. Nguyen, K. Cai, Kees A. Schouhamer Immink","doi":"10.1109/ISIT44484.2020.9174430","DOIUrl":null,"url":null,"abstract":"The subblock energy-constrained codes (SECCs) have recently attracted attention due to various applications in communication systems such as simultaneous energy and information transfer. In a SECC, each codeword is divided into smaller subblocks, and every subblock is constrained to carry sufficient energy. In this work, we study SECCs under more general constraints, namely bounded SECCs and sliding-window constrained codes (SWCCs), and propose two methods to construct such codes with low redundancy and linear-time complexity, based on Knuth’s balancing technique and sequence replacement technique. For certain codes parameters, our methods incur only one redundant bit.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The subblock energy-constrained codes (SECCs) have recently attracted attention due to various applications in communication systems such as simultaneous energy and information transfer. In a SECC, each codeword is divided into smaller subblocks, and every subblock is constrained to carry sufficient energy. In this work, we study SECCs under more general constraints, namely bounded SECCs and sliding-window constrained codes (SWCCs), and propose two methods to construct such codes with low redundancy and linear-time complexity, based on Knuth’s balancing technique and sequence replacement technique. For certain codes parameters, our methods incur only one redundant bit.