{"title":"An evaluation of coarse grain dataflow code generation strategies","authors":"Wim Böhm, W. Najjar, Bhanu Shankar, L. Roh","doi":"10.1109/PMMP.1993.315554","DOIUrl":null,"url":null,"abstract":"Presents top-down and bottom-up methods for generating coarse grain dataflow or multithreaded code, and evaluates their effectiveness. The top-down technique generates clusters directly from the intermediate data dependence graph used for compiler optimizations. Bottom-up techniques coalesce fine-grain dataflow code into clusters. We measure the resulting number of clusters executed, cluster size, and number of inputs per cluster, for Livermore and Purdue benchmarks. The top-down method executes less clusters and instructions, but incurs a higher number of matches per cluster, which exemplifies the need for efficient matching of more than two inputs per cluster.","PeriodicalId":220365,"journal":{"name":"Proceedings of Workshop on Programming Models for Massively Parallel Computers","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Workshop on Programming Models for Massively Parallel Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMMP.1993.315554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Presents top-down and bottom-up methods for generating coarse grain dataflow or multithreaded code, and evaluates their effectiveness. The top-down technique generates clusters directly from the intermediate data dependence graph used for compiler optimizations. Bottom-up techniques coalesce fine-grain dataflow code into clusters. We measure the resulting number of clusters executed, cluster size, and number of inputs per cluster, for Livermore and Purdue benchmarks. The top-down method executes less clusters and instructions, but incurs a higher number of matches per cluster, which exemplifies the need for efficient matching of more than two inputs per cluster.