Visual inspection of complex mechanical assemblies based on Siamese networks for 3D point clouds

Velibor Došljak, Igor Jovančević, J. Orteu
{"title":"Visual inspection of complex mechanical assemblies based on Siamese networks for 3D point clouds","authors":"Velibor Došljak, Igor Jovančević, J. Orteu","doi":"10.1117/12.2692751","DOIUrl":null,"url":null,"abstract":"This paper proposes a solution for the problem of visual mechanical assembly inspection by processing point cloud data acquired via a 3D scanner. The approach is based on deep Siamese neural networks for 3D point clouds. To overcome the requirement for a large amount of labeled training data, only synthetically generated data is used for training and validation. Real-acquired point clouds are used only in testing phase.","PeriodicalId":295011,"journal":{"name":"International Conference on Quality Control by Artificial Vision","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Quality Control by Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2692751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a solution for the problem of visual mechanical assembly inspection by processing point cloud data acquired via a 3D scanner. The approach is based on deep Siamese neural networks for 3D point clouds. To overcome the requirement for a large amount of labeled training data, only synthetically generated data is used for training and validation. Real-acquired point clouds are used only in testing phase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三维点云Siamese网络的复杂机械组件视觉检测
本文提出了一种利用三维扫描仪采集的点云数据进行机械装配视觉检测的方法。该方法基于三维点云的深度暹罗神经网络。为了克服对大量标记训练数据的需求,只使用综合生成的数据进行训练和验证。实际获取的点云仅在测试阶段使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single-camera multi-point vision: on the use of robotics for digital image correlation f-AnoGAN for non-destructive testing in industrial anomaly detection Object detection model-based quality inspection using a deep CNN Reducing the latency and size of a deep CNN model for surface defect detection in manufacturing Deep-learning based industrial quality control on low-cost smart cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1