{"title":"Application of particle filters for indoor positioning using floor plans","authors":"P. Davidson, J. Collin, J. Takala","doi":"10.1109/UPINLBS.2010.5653830","DOIUrl":null,"url":null,"abstract":"This paper presents a numerical approach to the pedestrian map-matching problem using building plans. The proposed solution is based on a sequential Monte Carlo method, so called particle filtering. This algorithm can be adapted for implementation on real-time pedestrian navigation systems using low-cost MEMS gyroscopes and accelerometers as dead-reckoning sensors. The algorithm reliability and accuracy performance was investigated using simulated data typical for pedestrians walking inside building. The results show that this map-aided dead reckoning system is able to provide accurate indoor positioning for long periods of time without using GPS data.","PeriodicalId":373653,"journal":{"name":"2010 Ubiquitous Positioning Indoor Navigation and Location Based Service","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ubiquitous Positioning Indoor Navigation and Location Based Service","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPINLBS.2010.5653830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64
Abstract
This paper presents a numerical approach to the pedestrian map-matching problem using building plans. The proposed solution is based on a sequential Monte Carlo method, so called particle filtering. This algorithm can be adapted for implementation on real-time pedestrian navigation systems using low-cost MEMS gyroscopes and accelerometers as dead-reckoning sensors. The algorithm reliability and accuracy performance was investigated using simulated data typical for pedestrians walking inside building. The results show that this map-aided dead reckoning system is able to provide accurate indoor positioning for long periods of time without using GPS data.