Exploration of Carbon Nanotube Forest Synthesis-Structure Relationships Using Physics-Based Simulation and Machine Learning

T. Hajilounezhad, Zakariya A. Oraibi, Ramakrishna Surya, F. Bunyak, M. Maschmann, P. Calyam, K. Palaniappan
{"title":"Exploration of Carbon Nanotube Forest Synthesis-Structure Relationships Using Physics-Based Simulation and Machine Learning","authors":"T. Hajilounezhad, Zakariya A. Oraibi, Ramakrishna Surya, F. Bunyak, M. Maschmann, P. Calyam, K. Palaniappan","doi":"10.1109/AIPR47015.2019.9316542","DOIUrl":null,"url":null,"abstract":"The parameter space of CNT forest synthesis is vast and multidimensional, making experimental and/or numerical exploration of the synthesis prohibitive. We propose a more practical approach to explore the synthesis-process relationships of CNT forests using machine learning (ML) algorithms to infer the underlying complex physical processes. Currently, no such ML model linking CNT forest morphology to synthesis parameters has been demonstrated. In the current work, we use a physics-based numerical model to generate CNT forest morphology images with known synthesis parameters to train such a ML algorithm. The CNT forest synthesis variables of CNT diameter and CNT number densities are varied to generate a total of 12 distinct CNT forest classes. Images of the resultant CNT forests at different time steps during the growth and self-assembly process are then used as the training dataset. Based on the CNT forest structural morphology, multiple single and combined histogram-based texture descriptors are used as features to build a random forest (RF) classifier to predict class labels based on correlation of CNT forest physical attributes with the growth parameters. The machine learning model achieved an accuracy of up to 83.5% on predicting the synthesis conditions of CNT number density and diameter. These results are the first step towards rapidly characterizing CNT forest attributes using machine learning. Identifying the relevant process-structure interactions for the CNT forests using physics-based simulations and machine learning could rapidly advance the design, development, and adoption of CNT forest applications with varied morphologies and properties.","PeriodicalId":167075,"journal":{"name":"2019 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR47015.2019.9316542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The parameter space of CNT forest synthesis is vast and multidimensional, making experimental and/or numerical exploration of the synthesis prohibitive. We propose a more practical approach to explore the synthesis-process relationships of CNT forests using machine learning (ML) algorithms to infer the underlying complex physical processes. Currently, no such ML model linking CNT forest morphology to synthesis parameters has been demonstrated. In the current work, we use a physics-based numerical model to generate CNT forest morphology images with known synthesis parameters to train such a ML algorithm. The CNT forest synthesis variables of CNT diameter and CNT number densities are varied to generate a total of 12 distinct CNT forest classes. Images of the resultant CNT forests at different time steps during the growth and self-assembly process are then used as the training dataset. Based on the CNT forest structural morphology, multiple single and combined histogram-based texture descriptors are used as features to build a random forest (RF) classifier to predict class labels based on correlation of CNT forest physical attributes with the growth parameters. The machine learning model achieved an accuracy of up to 83.5% on predicting the synthesis conditions of CNT number density and diameter. These results are the first step towards rapidly characterizing CNT forest attributes using machine learning. Identifying the relevant process-structure interactions for the CNT forests using physics-based simulations and machine learning could rapidly advance the design, development, and adoption of CNT forest applications with varied morphologies and properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用物理模拟和机器学习探索碳纳米管森林合成-结构关系
碳纳米管森林合成的参数空间是巨大的和多维的,使得合成的实验和/或数值探索令人望而却步。我们提出了一种更实用的方法来探索碳纳米管森林的合成-过程关系,使用机器学习(ML)算法来推断潜在的复杂物理过程。目前,还没有这样的ML模型将碳纳米管森林形态与合成参数联系起来。在目前的工作中,我们使用基于物理的数值模型来生成具有已知合成参数的碳纳米管森林形态学图像来训练这样的ML算法。通过改变碳纳米管直径和碳纳米管数量密度的碳纳米管森林综合变量,共产生12个不同的碳纳米管森林类别。然后将生长和自组装过程中不同时间步长的碳纳米管森林图像用作训练数据集。在碳纳米管森林结构形态的基础上,利用多个单一和组合的直方图纹理描述符作为特征,构建随机森林(RF)分类器,根据碳纳米管森林物理属性与生长参数的相关性预测分类标签。机器学习模型在预测碳纳米管数量密度和直径的合成条件上达到了高达83.5%的准确率。这些结果是使用机器学习快速表征碳纳米管森林属性的第一步。使用基于物理的模拟和机器学习来确定碳纳米管森林的相关过程结构相互作用,可以快速推进具有不同形态和特性的碳纳米管森林应用的设计、开发和采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Segmentation of Nucleus, Cytoplasm and Background of Cervical Cells from Pap-smear Images using a Trainable Pixel Level Classifier Improving Industrial Safety Gear Detection through Re-ID conditioned Detector Internet of Things Anomaly Detection using Machine Learning Evaluation of Generative Adversarial Network Performance Based on Direct Analysis of Generated Images GLSNet: Global and Local Streams Network for 3D Point Cloud Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1