Comparison of Data Interpolation Methods in Time Course Pupil Diameter Data

Mahdieh Farzin Asanjan, V. Purutçuoğlu, F. Arı, D. Gökçay
{"title":"Comparison of Data Interpolation Methods in Time Course Pupil Diameter Data","authors":"Mahdieh Farzin Asanjan, V. Purutçuoğlu, F. Arı, D. Gökçay","doi":"10.1109/TIPTEKNO50054.2020.9299242","DOIUrl":null,"url":null,"abstract":"The missing data problem is one of the main challenges in many datasets. As long as the percentage of loss is under an acceptable range, different methods can be performed in order to fill these unobserved values. In this study the thresholding method, polynomial regression approach, smoothing splines, piecewise linear interpolation and the moving median approaches are used in order to fill the missing data. Among these alternatives, the smoothing spline method typically gives higher accuracy and captures the global feature of the data, whereas, it can eliminate the local changes in the measurements while smoothing. Hereby, in this study, we propose some alternative approaches, called normal ratio and normal ratio weighted with correlation together with modified moving median method in order to fill the missing data. These novel methods are previously applied in meteorological studies where the location of the missing values in a time-course dataset is important.","PeriodicalId":426945,"journal":{"name":"2020 Medical Technologies Congress (TIPTEKNO)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Medical Technologies Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO50054.2020.9299242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The missing data problem is one of the main challenges in many datasets. As long as the percentage of loss is under an acceptable range, different methods can be performed in order to fill these unobserved values. In this study the thresholding method, polynomial regression approach, smoothing splines, piecewise linear interpolation and the moving median approaches are used in order to fill the missing data. Among these alternatives, the smoothing spline method typically gives higher accuracy and captures the global feature of the data, whereas, it can eliminate the local changes in the measurements while smoothing. Hereby, in this study, we propose some alternative approaches, called normal ratio and normal ratio weighted with correlation together with modified moving median method in order to fill the missing data. These novel methods are previously applied in meteorological studies where the location of the missing values in a time-course dataset is important.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间轨迹瞳孔直径数据插值方法的比较
缺失数据问题是许多数据集面临的主要挑战之一。只要损失的百分比在可接受的范围内,就可以采用不同的方法来填补这些未观察到的值。本文采用阈值法、多项式回归法、平滑样条法、分段线性插值法和移动中值法来填补缺失数据。在这些方法中,平滑样条法通常具有较高的精度,能够捕获数据的全局特征,同时在平滑过程中可以消除测量值的局部变化。因此,在本研究中,我们提出了几种替代方法,称为正态比和加权相关正态比,并结合改进的移动中位数法来填补缺失数据。这些新方法以前应用于气象研究中,其中缺失值在时间过程数据集中的位置很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Classification of Brain Cancer with Machine Learning Algorithms Digital Filter Design Based on ARDUINO and Its Applications Use of Velocity Vectors for Cell Classification Under Acoustic Drifting Forces Development of a Full Face Mask during the COVID-19 Epidemic Spread Period TIPTEKNO 2020 Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1