Reactive Power MRAS for Rotor Resistance Estimation Taking Into Account Load-Dependent Saturation of Induction Motor

Ondrej Lipcak, J. Bauer, M. Chomat
{"title":"Reactive Power MRAS for Rotor Resistance Estimation Taking Into Account Load-Dependent Saturation of Induction Motor","authors":"Ondrej Lipcak, J. Bauer, M. Chomat","doi":"10.1109/EDPE.2019.8883887","DOIUrl":null,"url":null,"abstract":"The accuracy of induction motor (IM) drive with employed field-oriented control depends on precise identification of the IM equivalent circuit parameters. Those parameters can change significantly during the drive operation. Therefore, an adaptation of the IM model parameters is needed for a high-performance drive. Estimators based on model reference adaptive system (MRAS) are not computationally demanding, but they a priori exhibit sensitivity to the other, non-estimated parameters. This paper analyses the influence of the proper knowledge of the magnetizing inductance on the accuracy of the rotor resistance estimator based on the traditional reactive power MRAS. The paper also takes into account the load-dependent saturation of the IM, which is often omitted during the analysis and shows that the implemented load-dependent magnetization characteristic improves the MRAS and drive performance. Simulation and experimental results conducted on 12 kW IM are presented.","PeriodicalId":353978,"journal":{"name":"2019 International Conference on Electrical Drives & Power Electronics (EDPE)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electrical Drives & Power Electronics (EDPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDPE.2019.8883887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The accuracy of induction motor (IM) drive with employed field-oriented control depends on precise identification of the IM equivalent circuit parameters. Those parameters can change significantly during the drive operation. Therefore, an adaptation of the IM model parameters is needed for a high-performance drive. Estimators based on model reference adaptive system (MRAS) are not computationally demanding, but they a priori exhibit sensitivity to the other, non-estimated parameters. This paper analyses the influence of the proper knowledge of the magnetizing inductance on the accuracy of the rotor resistance estimator based on the traditional reactive power MRAS. The paper also takes into account the load-dependent saturation of the IM, which is often omitted during the analysis and shows that the implemented load-dependent magnetization characteristic improves the MRAS and drive performance. Simulation and experimental results conducted on 12 kW IM are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑负载相关饱和的异步电动机转子电阻估计无功MRAS
采用磁场定向控制的感应电机驱动精度取决于感应电机等效电路参数的准确辨识。在驱动器运行期间,这些参数可能会发生重大变化。因此,需要对IM模型参数进行调整以实现高性能硬盘。基于模型参考自适应系统(MRAS)的估计器不需要计算量,但它们对其他非估计参数先验地表现出敏感性。本文分析了在传统无功MRAS的基础上,正确认识磁化电感对转子电阻估计精度的影响。本文还考虑了IM的负载相关饱和,这在分析中经常被忽略,并表明实现的负载相关磁化特性改善了MRAS和驱动性能。给出了在12kw IM上的仿真和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Preliminary Design of Induction Machines Aided by Artificial Neural Networks Investigation of Induction Machine with Rotor-Bar Faults Comparison of Thermal Properties of the Magnetic Components of Interleaved DC/DC Converters Application of Hybrid Neural Network to Detection of Induction Motor Electrical Faults Design and Functional Demonstration of a 100 A Battery Testing Unit with Minimal Power Supply Load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1