An imbalanced data classification algorithm of improved autoencoder neural network

Chenggang Zhang, Wei Gao, Jiazhi Song, Jinqing Jiang
{"title":"An imbalanced data classification algorithm of improved autoencoder neural network","authors":"Chenggang Zhang, Wei Gao, Jiazhi Song, Jinqing Jiang","doi":"10.1109/ICACI.2016.7449810","DOIUrl":null,"url":null,"abstract":"Imbalanced data classification problem has always been a hotspot in the field of machine learning research. Pointing to the overfitting and noise problems of oversampling algorithm when synthesizing new minority class samples, the current study proposed a stacked denoising autoencoder neural network (SDAE) algorithm based on cost-sensitive oversampling, combining the cost-sensitive learning with denoising autoencoder neural network. The proposed algorithm can not only oversample minority class sample through misclassification cost, but it can denoise and classify the sampled dataset. Experiment shows that, compared with the traditional stacked autoencoder neural network (SAE) and oversampling autoencoder neural network without denoising process (OS-SAE), the proposed algorithm improves the classification accuracy of minority class of imbalanced datasets.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Imbalanced data classification problem has always been a hotspot in the field of machine learning research. Pointing to the overfitting and noise problems of oversampling algorithm when synthesizing new minority class samples, the current study proposed a stacked denoising autoencoder neural network (SDAE) algorithm based on cost-sensitive oversampling, combining the cost-sensitive learning with denoising autoencoder neural network. The proposed algorithm can not only oversample minority class sample through misclassification cost, but it can denoise and classify the sampled dataset. Experiment shows that, compared with the traditional stacked autoencoder neural network (SAE) and oversampling autoencoder neural network without denoising process (OS-SAE), the proposed algorithm improves the classification accuracy of minority class of imbalanced datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进自编码器神经网络的不平衡数据分类算法
不平衡数据分类问题一直是机器学习领域的研究热点。针对过采样算法在合成新的少数类样本时存在的过拟合和噪声问题,本研究提出了一种基于代价敏感过采样的叠置去噪自编码器神经网络(SDAE)算法,将代价敏感学习与去噪自编码器神经网络相结合。该算法不仅可以通过误分类代价对少数类样本进行过采样,而且可以对采样数据集进行去噪和分类。实验表明,与传统的叠置自编码器神经网络(SAE)和无去噪处理的过采样自编码器神经网络(OS-SAE)相比,本文算法提高了少数类不平衡数据集的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Short term traffic flow prediction based on on-line sequential extreme learning machine Computational intelligent color normalization for wheat plant images to support precision farming A new time-dependent algorithm for post enrolment-based course timetabling problem Semi-automatic construction of thyroid cancer intervention corpus from biomedical abstracts Improvement of spatial data clustering algorithm in city location
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1