Subnetwork partitioning and section restoration in translucent optical networks

Ezhan Karasan, M. Arisoylu
{"title":"Subnetwork partitioning and section restoration in translucent optical networks","authors":"Ezhan Karasan, M. Arisoylu","doi":"10.1117/12.533305","DOIUrl":null,"url":null,"abstract":"We discuss the problem of designing translucent optical networks composed of restorable, transparent subnetworks interconnected via transponders. We formulate the problem of designing restorable subnetworks in translucent networks as an Integer Linear Programming (ILP) problem, where the subnetworks are determined subject to the constraints that each subnetwork satisfies size limitations and it is 2-connected. A greedy heuristic algorithm for the same problem is also proposed for planar network topologies. We propose section restoration for translucent networks where failed connections are rerouted inside the subnetwork which contains the failed link. The network design problem of determining working and restoration capacities with section restoration is formulated as an ILP problem. Numerical results show that section restoration generates fiber costs which are close to those with the path restoration technique for the mesh topologies used in this study. It is also shown that the number of transponders with the translucent optical network is substantially reduced compared to opaque networks.","PeriodicalId":187370,"journal":{"name":"OptiComm: Optical Networking and Communications Conference","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OptiComm: Optical Networking and Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.533305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We discuss the problem of designing translucent optical networks composed of restorable, transparent subnetworks interconnected via transponders. We formulate the problem of designing restorable subnetworks in translucent networks as an Integer Linear Programming (ILP) problem, where the subnetworks are determined subject to the constraints that each subnetwork satisfies size limitations and it is 2-connected. A greedy heuristic algorithm for the same problem is also proposed for planar network topologies. We propose section restoration for translucent networks where failed connections are rerouted inside the subnetwork which contains the failed link. The network design problem of determining working and restoration capacities with section restoration is formulated as an ILP problem. Numerical results show that section restoration generates fiber costs which are close to those with the path restoration technique for the mesh topologies used in this study. It is also shown that the number of transponders with the translucent optical network is substantially reduced compared to opaque networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半透明光网络中的子网划分与分段恢复
我们讨论了半透明光网络的设计问题,半透明光网络由可恢复的透明子网组成,子网之间通过转发器相互连接。我们将半透明网络中可恢复子网的设计问题表述为一个整数线性规划(ILP)问题,其中每个子网满足大小限制并且是2连通的约束来确定子网。对于平面网络拓扑,也提出了一种贪心启发式算法。我们提出了半透明网络的部分恢复,其中失败的连接在包含失败链路的子网内被重路由。将区段恢复时确定工作和恢复能力的网络设计问题表述为ILP问题。数值结果表明,对于本文所采用的网格拓扑结构,截面恢复所产生的光纤成本与路径恢复所产生的光纤成本相近。结果还表明,与不透明的光网络相比,半透明光网络的转发器数量大大减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A hybrid protection-restoration mechanism for enhancing dual-failure restorability in optical mesh-restorable networks Overspill routing in optical networks: a new architecture for future-proof IP-over-WDM networks Grooming of multicast sessions in WDM ring networks Dynamic bandwidth allocation algorithms in EPON: a simulation study CHEETAH: circuit-switched high-speed end-to-end transport architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1