CONVERSATIONAL AI AND ARTIFICIAL NEURAL NETWORKS

AnaghaP Dixit
{"title":"CONVERSATIONAL AI AND ARTIFICIAL NEURAL NETWORKS","authors":"AnaghaP Dixit","doi":"10.20894/ijdmta.102.011.001.002","DOIUrl":null,"url":null,"abstract":"Augmented intelligence is revolutionizing the waybusinesses function on a day-to-day basis. ChatOps are one suchexample of how simple queries and activities, such as customerengagementorsalesoperations,can be handled without the involvement of a human. Chat Ops is the synthes is of client queries and an instantaneousinformationalexchangeinstrumentthatfacilitatesdevelopmentofsoftwareandoperationalmethodsinits transmission and execution. These are low-cost, computer-assistedprogramsthathelpincustomerserviceandanymodel of people management. ChatOps offer support at clients’convenience,irrespective of location hence an appeal to amultitude of people. Such a tool is reconstructing the way data isperceived,preventing it sover load and distilling information down to the most needed and practical elements. ChatOps inherentlymeans Conversational AI which uses NLP and other algorithmsthat compliment it and implements its functionalities. The bot istrained by having various intents as inputs, which provide the standard for the automated response. Alarge corpus of user input she lps the AI toget better at predictions and pattern matching. The more number of such inputs, the better trained machine model availabletouse.The intentslieonalargespectrum that could start off as simple chit chat to complicated instructions,while maintaininganinteractiveandcontinuousconversationflow.","PeriodicalId":414709,"journal":{"name":"International Journal of Data Mining Techniques and Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20894/ijdmta.102.011.001.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Augmented intelligence is revolutionizing the waybusinesses function on a day-to-day basis. ChatOps are one suchexample of how simple queries and activities, such as customerengagementorsalesoperations,can be handled without the involvement of a human. Chat Ops is the synthes is of client queries and an instantaneousinformationalexchangeinstrumentthatfacilitatesdevelopmentofsoftwareandoperationalmethodsinits transmission and execution. These are low-cost, computer-assistedprogramsthathelpincustomerserviceandanymodel of people management. ChatOps offer support at clients’convenience,irrespective of location hence an appeal to amultitude of people. Such a tool is reconstructing the way data isperceived,preventing it sover load and distilling information down to the most needed and practical elements. ChatOps inherentlymeans Conversational AI which uses NLP and other algorithmsthat compliment it and implements its functionalities. The bot istrained by having various intents as inputs, which provide the standard for the automated response. Alarge corpus of user input she lps the AI toget better at predictions and pattern matching. The more number of such inputs, the better trained machine model availabletouse.The intentslieonalargespectrum that could start off as simple chit chat to complicated instructions,while maintaininganinteractiveandcontinuousconversationflow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对话式人工智能和人工神经网络
增强智能正在彻底改变企业日常运作的方式。ChatOps就是这样一个例子,说明了如何在没有人参与的情况下处理简单的查询和活动,如客户参与或销售操作。聊天操作是客户端查询和即时信息交换的综合工具,它在传输和执行过程中促进了软件和操作方法的开发。这些都是低成本的计算机辅助程序,可以帮助客户服务和任何形式的人员管理。ChatOps在客户方便时提供支持,无论位置如何,因此对众多人具有吸引力。这种工具正在重建数据的感知方式,防止数据过载,并将信息提炼为最需要和最实用的元素。ChatOps本质上意味着会话AI,它使用NLP和其他算法来补充它并实现它的功能。机器人通过将各种意图作为输入进行约束,这些输入为自动响应提供了标准。大量的用户输入语料库帮助人工智能在预测和模式匹配方面做得更好。这样的输入数量越多,可用的训练有素的机器模型就越好。从简单的闲聊到复杂的指令,同时保持互动性和持续的对话流,这是一种广泛的交流方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Crop Price Prediction Using Decision Tree Artificial Intelligence Driven Chatbot Traffic offence Management System Online Resume Builder Using Django Attendance management using face recognition and fingerprint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1