Quality Assessment of Screen Content Images Based on Convolutional Neural Network with Dual Pathways

Yongli Chang, Sumei Li, Anqi Liu
{"title":"Quality Assessment of Screen Content Images Based on Convolutional Neural Network with Dual Pathways","authors":"Yongli Chang, Sumei Li, Anqi Liu","doi":"10.1109/ICIP42928.2021.9506707","DOIUrl":null,"url":null,"abstract":"To simulate the characteristics of perceiving things from binocular vision, a dual-pathway convolutional neural network (CNN) for quality assessment of screen content images (SCIs) is proposed. Considering the different sensitivity of retinal photoreceptor cells to RGB colors and the human visual attention mechanism, we employ a convolutional block attention module (CBAM) to weight the RGB channels and their spatial position on each channel. And 3D convolution considering inter-frame information is used to extract the correlation features between RGB channels. Moreover, because of the important role of optic chiasm in binocular vision, we design its simulation strategy in the proposed network. Furthermore, since the characteristics of multi-scale and multi-level are indispensable to perception of any objects in human visual system (HVS), a new multi-scale and multi-level feature fusion (MSMLFF) module is built to obtain perceptual features of different scales and levels. Experimental results show that the proposed method is superior to several mainstream SCIs metrics on publicly accessible databases.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To simulate the characteristics of perceiving things from binocular vision, a dual-pathway convolutional neural network (CNN) for quality assessment of screen content images (SCIs) is proposed. Considering the different sensitivity of retinal photoreceptor cells to RGB colors and the human visual attention mechanism, we employ a convolutional block attention module (CBAM) to weight the RGB channels and their spatial position on each channel. And 3D convolution considering inter-frame information is used to extract the correlation features between RGB channels. Moreover, because of the important role of optic chiasm in binocular vision, we design its simulation strategy in the proposed network. Furthermore, since the characteristics of multi-scale and multi-level are indispensable to perception of any objects in human visual system (HVS), a new multi-scale and multi-level feature fusion (MSMLFF) module is built to obtain perceptual features of different scales and levels. Experimental results show that the proposed method is superior to several mainstream SCIs metrics on publicly accessible databases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双路径卷积神经网络的屏幕内容图像质量评估
为了模拟双眼视觉感知事物的特征,提出了一种用于屏幕内容图像质量评估的双通道卷积神经网络(CNN)。考虑到视网膜感光细胞对RGB颜色的不同敏感性和人类视觉注意机制,我们采用卷积块注意模块(CBAM)对RGB通道及其在每个通道上的空间位置进行加权。采用考虑帧间信息的三维卷积提取RGB通道间的相关特征。此外,由于视交叉在双目视觉中的重要作用,我们在所提出的网络中设计了其仿真策略。此外,针对人类视觉系统对任何物体的感知都离不开多尺度和多层次的特征,构建了一种新的多尺度和多层次特征融合(MSMLFF)模块,以获取不同尺度和层次的感知特征。实验结果表明,该方法在公共访问数据库上优于几种主流的SCIs指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1