Hybrid Feature Factored System for Scoring Extracted Passage Relevance in Regulatory Filings

Denys Proux, Claude Roux, Ágnes Sándor, Julien Perez
{"title":"Hybrid Feature Factored System for Scoring Extracted Passage Relevance in Regulatory Filings","authors":"Denys Proux, Claude Roux, Ágnes Sándor, Julien Perez","doi":"10.1145/3077240.3077251","DOIUrl":null,"url":null,"abstract":"We report in this paper our contribution to the FEIII 2017 challenge addressing relevance ranking of passages extracted from 10-K and 10-Q regulatory filings. We leveraged our previous work on document structure and content analysis for regulatory filings to train hybrid text analytics and decision making models. We designed and trained several layers of classifiers fed with linguistic and semantic features to improve relevance prediction. We discuss in this paper our experiments and results on the competition data set.","PeriodicalId":326424,"journal":{"name":"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077240.3077251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We report in this paper our contribution to the FEIII 2017 challenge addressing relevance ranking of passages extracted from 10-K and 10-Q regulatory filings. We leveraged our previous work on document structure and content analysis for regulatory filings to train hybrid text analytics and decision making models. We designed and trained several layers of classifiers fed with linguistic and semantic features to improve relevance prediction. We discuss in this paper our experiments and results on the competition data set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合特征因子系统评分提取通道相关性在监管文件
我们在本文中报告了我们对FEIII 2017挑战的贡献,该挑战解决了从10-K和10-Q监管文件中提取的段落的相关性排名。我们利用之前在监管文件的文档结构和内容分析方面的工作来训练混合文本分析和决策模型。我们设计并训练了几层以语言和语义特征为特征的分类器,以提高相关性预测。本文讨论了我们在竞争数据集上的实验和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensor Factors to Monitor the Co-Movement of Equity Prices Extracting Knowledge Graphs from Financial Filings: Extended Abstract Financial Entity Identification and Information Integration (FEIII) 2017 Challenge: The Report of the Organizing Committee Towards Re-defining Relation Understanding in Financial Domain Entity relationship ranking using differential keyword-role affinity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1