HiVAD : A Voice Activity Detection Application Based on Deep Learning

Muhammad Hilmi Faridh, U. S. Zulpratita
{"title":"HiVAD : A Voice Activity Detection Application Based on Deep Learning","authors":"Muhammad Hilmi Faridh, U. S. Zulpratita","doi":"10.26760/elkomika.v9i4.856","DOIUrl":null,"url":null,"abstract":"In this paper, the detection of sound activity is presented on smartphones in realtime with convolutional neural networks. Reduced computing time is a problem from previous studies. Despite the use of machine learning approaches, there are still many shortcomings from previous research. A log-mel energy spectrogram narrates the sound signal image. Then the sound signal image is inputted into CNN's deep learning to classify the human voice and noise. HiVAD outperformed the percentage of other VAD methods, namely G729B, Sohn, and RF from the test results shown with an average SHR accuracy of 15.89%, 28.98%, 42.13% at 0dB, 8.67%, 16.29% ,17.63% at 5 dB, and 1.35%, 7.72%, 5.14% at 10 dB. In addition, the Multi-threading mechanism enables efficient computing for real-time. This study shows that CNN's architecture on HiVAD significantly improves the accuracy of sound activity detection.","PeriodicalId":344430,"journal":{"name":"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/elkomika.v9i4.856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the detection of sound activity is presented on smartphones in realtime with convolutional neural networks. Reduced computing time is a problem from previous studies. Despite the use of machine learning approaches, there are still many shortcomings from previous research. A log-mel energy spectrogram narrates the sound signal image. Then the sound signal image is inputted into CNN's deep learning to classify the human voice and noise. HiVAD outperformed the percentage of other VAD methods, namely G729B, Sohn, and RF from the test results shown with an average SHR accuracy of 15.89%, 28.98%, 42.13% at 0dB, 8.67%, 16.29% ,17.63% at 5 dB, and 1.35%, 7.72%, 5.14% at 10 dB. In addition, the Multi-threading mechanism enables efficient computing for real-time. This study shows that CNN's architecture on HiVAD significantly improves the accuracy of sound activity detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HiVAD:一个基于深度学习的语音活动检测应用
本文利用卷积神经网络对智能手机上的声音活动进行实时检测。减少计算时间是以往研究的一个问题。尽管使用了机器学习方法,但从以前的研究中仍然存在许多缺点。对数能量谱图描述声音信号图像。然后将声音信号图像输入到CNN的深度学习中,对人的声音和噪声进行分类。从测试结果来看,HiVAD在0dB时的平均SHR精度分别为15.89%、28.98%、42.13%,在5 dB时为8.67%、16.29%、17.63%,在10 dB时为1.35%、7.72%、5.14%,优于其他VAD方法,即G729B、Sohn和RF。此外,多线程机制支持高效的实时计算。本研究表明,CNN在HiVAD上的架构显著提高了声活动检测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Immersion Duration Effect of Purple Leaf Extract (Graptophllum Pictum) on DSSC Model Kanal 5G dengan Pengaruh Kelembapan pada Frekuensi 3,3 GHz dan Bandwidth 99 MHz Berbasis Convolutional Codes Analisis Faktor Kapasitas Pembangkit Listrik Hibrida PLTB dengan PLTD di Pulau Terpencil: Studi Kasus Elat Pulau Serau Maluku Sistem Kendali Eddy Current Brakes Dinamometer menggunakan Linear Quadratic Regulator (LQR) Multiplikasi Input Analog pada PLC menggunakan Multiplekser IC74HC4067
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1