Collaborative Filtering Algorithm Based on User Characteristic and Time Weight

Panpan Wang, Hong Hou, Xiaoqun Guo
{"title":"Collaborative Filtering Algorithm Based on User Characteristic and Time Weight","authors":"Panpan Wang, Hong Hou, Xiaoqun Guo","doi":"10.1145/3316615.3316681","DOIUrl":null,"url":null,"abstract":"This paper proposes a collaborative filtering recommendation algorithm based on user characteristics and time weight which focuses on the data sparseness and cold start problems of collaborative filtering algorithms. First, digitize user's characteristics in the dataset and calculate the similarity degree of the user's feature, then weight the similarity calculation formula with the integration time function to obtain the comprehensive similarity so that a more accurate prediction score is obtained. The comparison experiments showed that the algorithm can reduce the sparseness of the data set effectively when the data is extremely sparse, and to some extent, it alleviates the cold start problem and improves the prediction accuracy of the recommendation algorithm.","PeriodicalId":268392,"journal":{"name":"Proceedings of the 2019 8th International Conference on Software and Computer Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 8th International Conference on Software and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316615.3316681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a collaborative filtering recommendation algorithm based on user characteristics and time weight which focuses on the data sparseness and cold start problems of collaborative filtering algorithms. First, digitize user's characteristics in the dataset and calculate the similarity degree of the user's feature, then weight the similarity calculation formula with the integration time function to obtain the comprehensive similarity so that a more accurate prediction score is obtained. The comparison experiments showed that the algorithm can reduce the sparseness of the data set effectively when the data is extremely sparse, and to some extent, it alleviates the cold start problem and improves the prediction accuracy of the recommendation algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于用户特征和时间权重的协同过滤算法
针对协同过滤算法的数据稀疏性和冷启动问题,提出了一种基于用户特征和时间权重的协同过滤推荐算法。首先对数据集中的用户特征进行数字化,计算用户特征的相似度,然后将相似度计算公式与积分时间函数加权,得到综合相似度,从而得到更准确的预测分数。对比实验表明,在数据极度稀疏的情况下,该算法能有效降低数据集的稀疏性,在一定程度上缓解了冷启动问题,提高了推荐算法的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BookCeption An Enhanced Key Security of Playfair Cipher Algorithm Adoption Issues in DevOps from the Perspective of Continuous Delivery Pipeline A User Attribute Recommendation Algorithm and Peer3D Technology based WebVR P2P Transmission Scheme Survey of Hyperledger Blockchain Frameworks: Case Study in FPT University's Cryptocurrency Wallets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1