Semantic depth of field

Robert Kosara, S. Miksch, H. Hauser
{"title":"Semantic depth of field","authors":"Robert Kosara, S. Miksch, H. Hauser","doi":"10.1109/INFVIS.2001.963286","DOIUrl":null,"url":null,"abstract":"We present a new technique called Semantic Depth of Field (SDOF) as an alternative approach to focus-and-context displays of information. We utilize a well-known method from photography and cinematography (depth-of-field effect) for information visualization, which is to blur different parts of the depicted scene in dependence of their relevance. Independent of their spatial locations, objects of interest are depicted sharply in SDOF, whereas the context of the visualization is blurred. In this paper, we present a flexible model of SDOF which can be easily adopted to various types of applications. We discuss pros and cons of the new technique, give examples of application, and describe a fast prototype implementation of SDOF.","PeriodicalId":131263,"journal":{"name":"IEEE Symposium on Information Visualization, 2001. INFOVIS 2001.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"160","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Information Visualization, 2001. INFOVIS 2001.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFVIS.2001.963286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 160

Abstract

We present a new technique called Semantic Depth of Field (SDOF) as an alternative approach to focus-and-context displays of information. We utilize a well-known method from photography and cinematography (depth-of-field effect) for information visualization, which is to blur different parts of the depicted scene in dependence of their relevance. Independent of their spatial locations, objects of interest are depicted sharply in SDOF, whereas the context of the visualization is blurred. In this paper, we present a flexible model of SDOF which can be easily adopted to various types of applications. We discuss pros and cons of the new technique, give examples of application, and describe a fast prototype implementation of SDOF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语义景深
我们提出了一种新的技术,称为语义景深(SDOF)作为一种替代方法的焦点和上下文显示的信息。我们利用摄影和电影中众所周知的方法(景深效果)来实现信息可视化,即根据所描绘场景的不同部分的相关性来模糊它们。独立于它们的空间位置,感兴趣的对象在SDOF中被清晰地描绘出来,而可视化的背景是模糊的。本文提出了一种灵活的SDOF模型,可以很容易地应用于各种类型的应用。讨论了新技术的优缺点,给出了应用实例,并描述了一种快速的SDOF原型实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
To draw a tree 2D vs 3D, implications on spatial memory Ordered treemap layouts Visualizing time-series on spirals Change blindness in information visualization: a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1