Unsupervised Clustering using Multi-Resolution Perceptual Grouping

T. Syeda-Mahmood, Fei Wang
{"title":"Unsupervised Clustering using Multi-Resolution Perceptual Grouping","authors":"T. Syeda-Mahmood, Fei Wang","doi":"10.1109/CVPR.2007.382986","DOIUrl":null,"url":null,"abstract":"Clustering is a common operation for data partitioning in many practical applications. Often, such data distributions exhibit higher level structures which are important for problem characterization, but are not explicitly discovered by existing clustering algorithms. In this paper, we introduce multi-resolution perceptual grouping as an approach to unsupervised clustering. Specifically, we use the perceptual grouping constraints of proximity, density, contiguity and orientation similarity. We apply these constraints in a multi-resolution fashion, to group sample points in high dimensional spaces into salient clusters. We present an extensive evaluation of the clustering algorithm against state-of-the-art supervised and unsupervised clustering methods on large datasets.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.382986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Clustering is a common operation for data partitioning in many practical applications. Often, such data distributions exhibit higher level structures which are important for problem characterization, but are not explicitly discovered by existing clustering algorithms. In this paper, we introduce multi-resolution perceptual grouping as an approach to unsupervised clustering. Specifically, we use the perceptual grouping constraints of proximity, density, contiguity and orientation similarity. We apply these constraints in a multi-resolution fashion, to group sample points in high dimensional spaces into salient clusters. We present an extensive evaluation of the clustering algorithm against state-of-the-art supervised and unsupervised clustering methods on large datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多分辨率感知分组的无监督聚类
在许多实际应用中,聚类是一种常见的数据分区操作。通常,这样的数据分布表现出对问题表征很重要的高级结构,但现有的聚类算法没有明确地发现这些结构。本文引入多分辨率感知分组作为一种无监督聚类方法。具体来说,我们使用了接近性、密度、邻近性和方向相似性的感知分组约束。我们以多分辨率的方式应用这些约束,将高维空间中的样本点分组为显著簇。我们对大型数据集上最先进的监督和无监督聚类方法的聚类算法进行了广泛的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Region and Edge Cues for Image Segmentation in a Probabilistic Gaussian Mixture Framework Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression Enhanced Level Building Algorithm for the Movement Epenthesis Problem in Sign Language Recognition Change Detection in a 3-d World Layered Graph Match with Graph Editing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1