LSTM-based Models for Earthquake Prediction

Asmae Berhich, Fatima-Zahra Belouadha, M. Kabbaj
{"title":"LSTM-based Models for Earthquake Prediction","authors":"Asmae Berhich, Fatima-Zahra Belouadha, M. Kabbaj","doi":"10.1145/3386723.3387865","DOIUrl":null,"url":null,"abstract":"Over the last few years, many works have been done in earthquake prediction using different techniques and precursors in order to warn of earthquake damages and save human lives. Plenty of works have failed to sufficiently predict earthquakes, because of the complexity and the unpredictable nature of this task. Therefore, in this work we use the powerful deep learning technique. A useful algorithm that captures complex relationships in time series data. The technique is called long short-term memory (LSTM). The work employs this method in two cases of study; the first learns all the datasets in one model, the second case learns the correlations on two divided groups considering their range of magnitude. The results show that learning decomposed datasets gives more well-functioning predictions since it exploits the nature of each type of seismic events.","PeriodicalId":139072,"journal":{"name":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386723.3387865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Over the last few years, many works have been done in earthquake prediction using different techniques and precursors in order to warn of earthquake damages and save human lives. Plenty of works have failed to sufficiently predict earthquakes, because of the complexity and the unpredictable nature of this task. Therefore, in this work we use the powerful deep learning technique. A useful algorithm that captures complex relationships in time series data. The technique is called long short-term memory (LSTM). The work employs this method in two cases of study; the first learns all the datasets in one model, the second case learns the correlations on two divided groups considering their range of magnitude. The results show that learning decomposed datasets gives more well-functioning predictions since it exploits the nature of each type of seismic events.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于lstm的地震预测模型
在过去的几年里,人们利用不同的技术和前兆进行了许多地震预报工作,以预警地震危害,拯救人类生命。由于这项工作的复杂性和不可预测性,许多工作都未能充分预测地震。因此,在这项工作中,我们使用了强大的深度学习技术。捕获时间序列数据中复杂关系的有用算法。这种技术被称为长短期记忆(LSTM)。这项工作在两个研究案例中采用了这种方法;第一种情况是学习一个模型中的所有数据集,第二种情况是学习考虑其幅度范围的两个划分组的相关性。结果表明,学习分解的数据集可以提供更有效的预测,因为它利用了每种地震事件的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive-MIMO Configuration of Multipolarized ULA and UCA in 5G Wireless Communications Enhanced Duplicate Count Strategy: Towards New Algorithms to Improve Duplicate Detection Sensors Transposing Technique for Minimizing the Path Loss Effect and Enhancement of Battery Lifetime in Wireless Body Area Sensor Networks A Survey of Intrusion Detection Algorithm in VANET A Review on Cybersecurity: Challenges & Emerging Threats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1