Average-value modeling of a peak-current controlled galvanically-isolated DC-DC converter for shipboard power distribution

H. Suryanarayana, S. Sudhoff
{"title":"Average-value modeling of a peak-current controlled galvanically-isolated DC-DC converter for shipboard power distribution","authors":"H. Suryanarayana, S. Sudhoff","doi":"10.1109/ESTS.2013.6523727","DOIUrl":null,"url":null,"abstract":"The average-value model of a peak-current controlled dc-dc converter with galvanic isolation is derived and its accuracy is demonstrated. The two main contributions of this paper are the development of a new peak-current based control which ensures that load fault currents do not propagate through the system and the derivation of an average-value model for the chosen converter topology with the aforementioned control. The proposed control strategy is shown to yield excellent fault performance. The average-value model (AVM) accurately captures most low-frequency dynamics and is much faster to evaluate than a waveform-level model which includes switching. The subject converter and its control are intended for use in a part of a larger distribution system and, in particular, a shipboard DC power system. The comparison between the AVM and a waveform-level model of a laboratory scale DC-DC converter demonstrates the accuracy of the AVM.","PeriodicalId":119318,"journal":{"name":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTS.2013.6523727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The average-value model of a peak-current controlled dc-dc converter with galvanic isolation is derived and its accuracy is demonstrated. The two main contributions of this paper are the development of a new peak-current based control which ensures that load fault currents do not propagate through the system and the derivation of an average-value model for the chosen converter topology with the aforementioned control. The proposed control strategy is shown to yield excellent fault performance. The average-value model (AVM) accurately captures most low-frequency dynamics and is much faster to evaluate than a waveform-level model which includes switching. The subject converter and its control are intended for use in a part of a larger distribution system and, in particular, a shipboard DC power system. The comparison between the AVM and a waveform-level model of a laboratory scale DC-DC converter demonstrates the accuracy of the AVM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
舰船配电用峰值电流控制电隔离DC-DC变换器的平均值建模
推导了带电流隔离的峰值电流控制dc-dc变换器的平均值模型,并对其精度进行了验证。本文的两个主要贡献是开发了一种新的基于峰值电流的控制方法,该方法确保负载故障电流不会在系统中传播,并推导了使用上述控制方法所选择的变换器拓扑的平均值模型。结果表明,该控制策略具有良好的故障性能。平均值模型(AVM)准确捕获大多数低频动态,并且比包含开关的波形级模型更快地进行评估。本课题的变换器及其控制是用于大型配电系统的一部分,特别是船舶直流电源系统。将AVM与实验室规模DC-DC变换器的波形级模型进行比较,验证了AVM的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pole-restraining control for Modular Multilevel Converters in electric-ship applications Generic modeling and analysis framework for shipboard system design Electric generation technologies for all-electric ships with Medium-Voltage DC power distribution systems Electrical machine iron loss predictions - A unique engineering approach utilizing transient finite element methods - Part 1: Theory and calculation method Modular Multilevel Converter for propulsion system of electric ships
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1