Study on support vector machine based quality prediction of complex mechatronic systems

Yao Cheng, Xin Gao, Tianyi Gao, Zelin Ren
{"title":"Study on support vector machine based quality prediction of complex mechatronic systems","authors":"Yao Cheng, Xin Gao, Tianyi Gao, Zelin Ren","doi":"10.1109/ICICIP.2016.7885898","DOIUrl":null,"url":null,"abstract":"Aimed to build a health monitoring scheme of complex mechatronic systems, a quality prediction on Tennessee Eastman (TE) process based on support vector machine (SVM) is proposed in this paper after a brief investigation on the regression ability of SVM. The SVM model is builded using the datasets generated by TE process simulation platform. Furthermore the prediction precision of SVM is testified using the simulation of TE process compared with other prediction methods. It indicates from the results that SVM is more beneficial according to the root mean square errors (RMSE) between the actual and the predicted data.","PeriodicalId":226381,"journal":{"name":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2016.7885898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aimed to build a health monitoring scheme of complex mechatronic systems, a quality prediction on Tennessee Eastman (TE) process based on support vector machine (SVM) is proposed in this paper after a brief investigation on the regression ability of SVM. The SVM model is builded using the datasets generated by TE process simulation platform. Furthermore the prediction precision of SVM is testified using the simulation of TE process compared with other prediction methods. It indicates from the results that SVM is more beneficial according to the root mean square errors (RMSE) between the actual and the predicted data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的复杂机电系统质量预测研究
为了构建复杂机电系统的健康监测方案,在简要研究支持向量机(SVM)回归能力的基础上,提出了一种基于支持向量机(SVM)的田纳西州伊士曼(TE)过程质量预测方法。利用TE过程仿真平台生成的数据集建立支持向量机模型。通过对TE过程的仿真,对比其他预测方法,验证了支持向量机的预测精度。结果表明,从实际数据与预测数据的均方根误差(RMSE)来看,支持向量机更为有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New results on stability and stabilization analyses for T-S fuzzy systems with distributed time-delay under imperfect premise matching Nonlinear interval regression analysis based on spline fuzzy model with interval coefficients Detection of abnormal process behavior in copper solvent extraction by Hotelling T2 and squared prediction error control chart A using of just-in-time learning based data driven method in continuous stirred tank heater Study on a density peak based clustering algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1