Longest k-tuple Common Sub-Strings

Tiantian Li, Daming Zhu, Haitao Jiang, Haodi Feng, Xuefeng Cui
{"title":"Longest k-tuple Common Sub-Strings","authors":"Tiantian Li, Daming Zhu, Haitao Jiang, Haodi Feng, Xuefeng Cui","doi":"10.1109/BIBM55620.2022.9995199","DOIUrl":null,"url":null,"abstract":"We focus on a new problem that is formulated to find a longest k-tuple of common sub-strings (abbr. k-CSSs) of two or more strings. We present a suffix tree based algorithm for this problem, which can find a longest k-CSS of m strings in $O(kmn^{k})$ time and $O(kmn)$ space where n is the length sum of the m strings. This algorithm can be used to approximate the longest k-CSS problem to a performance ratio $\\frac{1}{\\epsilon}$ in $O(kmn^{\\lceil\\epsilon k\\rceil})$ time for $\\epsilon\\in(0,1]$. Since the algorithm has the space complexity in linear order of n, it will show advantage in comparing particularly long strings. This algorithm proves that the problem that asks to find a longest gapped pattern of non-constant number of strings is polynomial time solvable if the gap number is restricted constant, although the problem without any restriction on the gap number was proved NP-Hard. Using a C++ tool that is reliant on the algorithm, we performed experiments of finding longest 2-CSSs, 3-CSSs and 5-CSSs of 2 ~ 14 COVID-19 S-proteins. Under the help of longest 2-CSSs and 3-CSSs of COVID-19 S-proteins, we identified the mutation sites in the S-proteins of two COVID-19 variants Delta and Omicron. The algorithm based tool is available for downloading at https://github.com/lytt0/k-CSS.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We focus on a new problem that is formulated to find a longest k-tuple of common sub-strings (abbr. k-CSSs) of two or more strings. We present a suffix tree based algorithm for this problem, which can find a longest k-CSS of m strings in $O(kmn^{k})$ time and $O(kmn)$ space where n is the length sum of the m strings. This algorithm can be used to approximate the longest k-CSS problem to a performance ratio $\frac{1}{\epsilon}$ in $O(kmn^{\lceil\epsilon k\rceil})$ time for $\epsilon\in(0,1]$. Since the algorithm has the space complexity in linear order of n, it will show advantage in comparing particularly long strings. This algorithm proves that the problem that asks to find a longest gapped pattern of non-constant number of strings is polynomial time solvable if the gap number is restricted constant, although the problem without any restriction on the gap number was proved NP-Hard. Using a C++ tool that is reliant on the algorithm, we performed experiments of finding longest 2-CSSs, 3-CSSs and 5-CSSs of 2 ~ 14 COVID-19 S-proteins. Under the help of longest 2-CSSs and 3-CSSs of COVID-19 S-proteins, we identified the mutation sites in the S-proteins of two COVID-19 variants Delta and Omicron. The algorithm based tool is available for downloading at https://github.com/lytt0/k-CSS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最长的k元组公共子字符串
我们关注的是一个新的问题,该问题被表述为寻找两个或多个字符串的公共子字符串(缩写为k- css)的最长k元组。我们提出了一种基于后缀树的算法,该算法可以在$O(kmn^{k})$时间和$O(kmn)$空间中找到m个字符串的最长k-CSS,其中n为m个字符串的长度和。该算法可用于将最长k-CSS问题近似为$\epsilon\in(0,1]$在$O(kmn^{\lceil\epsilon k\rceil})$时间内的性能比率$\frac{1}{\epsilon}$。由于该算法的空间复杂度为n的线性数量级,因此在比较特别长的字符串时将显示出优势。该算法证明了当间隙数为限制常数时,求非常数串最长间隙模式的问题是多项式时间可解的,尽管不限制间隙数的问题被证明为NP-Hard。利用依赖于该算法的c++工具,我们对214个COVID-19 s蛋白进行了最长2- css、3- css和5- css的实验。在COVID-19 s蛋白最长的2-CSSs和3-CSSs的帮助下,我们确定了两个COVID-19变体Delta和Omicron的s蛋白突变位点。基于算法的工具可从https://github.com/lytt0/k-CSS下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for associating structural variants with cell-specific transcription factors and histone modifications in defect phenotypes Secure Password Using EEG-based BrainPrint System: Unlock Smartphone Password Using Brain-Computer Interface Technology On functional annotation with gene co-expression networks ST-ChIP: Accurate prediction of spatiotemporal ChIP-seq data with recurrent neural networks Discovering the Knowledge in Unstructured Early Drug Development Data Using NLP and Advanced Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1