Adding Constraints to Situations When, In Addition to Intervals,We Also Have Partial Information about Probabilities

M. Ceberio, V. Kreinovich, G. Xiang, S. Ferson, C. Joslyn
{"title":"Adding Constraints to Situations When, In Addition to Intervals,We Also Have Partial Information about Probabilities","authors":"M. Ceberio, V. Kreinovich, G. Xiang, S. Ferson, C. Joslyn","doi":"10.1109/SCAN.2006.7","DOIUrl":null,"url":null,"abstract":"In many practical situations, we need to combine probabilistic and interval uncertainty. For example, we need to 1 A compute statistics like population mean E = 1/n.nSigmai=1xi or population variance V = 1/nnSigmai=1(xi-E)2 in situations when we only know intervals xi of possible value of xi. In this case, it is desirable to compute the range of the corresponding characteristic. Some range computation problems are NP-hard; for these problems, in general, only an enclosure is possible. For other problems, there are efficient algorithms. In many practical situations, we have additional information that can be used as constraints on possible cumulative distribution functions (cdfs). For example, we may know that the actual (unknown) cdf is Gaussian. In this paper, we show that such constraints enable us to drastically narrow down the resulting ranges - and sometimes, transform the originally intractable (NP-hard) computational problem of computing the exact range into an efficiently solvable one. This possibility is illustrated on the simplest example of an NP-problem from interval statistics: the problem of computing the range V of the variance V. We also describe how we can estimate the amount of information under such combined intervals-and-constraints uncertainty.","PeriodicalId":388600,"journal":{"name":"12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCAN.2006.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In many practical situations, we need to combine probabilistic and interval uncertainty. For example, we need to 1 A compute statistics like population mean E = 1/n.nSigmai=1xi or population variance V = 1/nnSigmai=1(xi-E)2 in situations when we only know intervals xi of possible value of xi. In this case, it is desirable to compute the range of the corresponding characteristic. Some range computation problems are NP-hard; for these problems, in general, only an enclosure is possible. For other problems, there are efficient algorithms. In many practical situations, we have additional information that can be used as constraints on possible cumulative distribution functions (cdfs). For example, we may know that the actual (unknown) cdf is Gaussian. In this paper, we show that such constraints enable us to drastically narrow down the resulting ranges - and sometimes, transform the originally intractable (NP-hard) computational problem of computing the exact range into an efficiently solvable one. This possibility is illustrated on the simplest example of an NP-problem from interval statistics: the problem of computing the range V of the variance V. We also describe how we can estimate the amount of information under such combined intervals-and-constraints uncertainty.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在情况下添加约束,除了间隔,我们也有关于概率的部分信息
在许多实际情况下,我们需要将概率不确定性和区间不确定性结合起来。例如,我们需要计算统计数据,如总体均值E = 1/n。nnSigmai= 1xi或者总体方差V =1 /nnSigmai=1(xi- e)2当我们只知道区间xi的可能值。在这种情况下,需要计算相应特征的范围。一些距离计算问题是np困难的;对于这些问题,一般来说,只有一个外壳是可能的。对于其他问题,有一些有效的算法。在许多实际情况下,我们有额外的信息可以用作可能的累积分布函数(cdfs)的约束。例如,我们可能知道实际的(未知的)cdf是高斯分布。在本文中,我们证明了这些约束使我们能够大大缩小结果范围-有时,将计算精确范围的原始棘手(NP-hard)计算问题转化为有效可解的问题。这种可能性在区间统计中最简单的np问题的例子中得到了说明:计算方差V的范围V的问题。我们还描述了如何在这种组合的区间和约束不确定性下估计信息量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Validated computation for infinite dimensional eigenvalue problems VALENCIA-IVP: A Comparison with Other Initial Value Problem Solvers Fast and Accurate Multi-Argument Interval Evaluation of Polynomials Towards Combining Probabilistic, Interval, Fuzzy Uncertainty, and Constraints: An Example Using the Inverse Problem in Geophysics Computer-Assisted Proofs in Solving Linear Parametric Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1