Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones

B. Klouche, S. Benslimane, Sakina Rim Bennabi
{"title":"Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones","authors":"B. Klouche, S. Benslimane, Sakina Rim Bennabi","doi":"10.4018/ijtd.2020040105","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is one of the recent areas of emerging research in the classification of sentiment polarity and text mining, particularly with the considerable number of opinions available on social media. The Algerian Operator Telephone Ooredoo, as other operators, deploys in its new strategy to conquer new customers, by exploiting their opinions through a sentiments analysis. The purpose of this work is to set up a system called “Ooredoo Rayek”, whose objective is to collect, transliterate, translate and classify the textual data expressed by the Ooredoo operator's customers. This article developed a set of rules allowing the transliteration from Algerian Arabizi to Algerian dialect. Furthermore, the authors used Naïve Bayes (NB) and (Support Vector Machine) SVM classifiers to assign polarity tags to Facebook comments from the official pages of Ooredoo written in multilingual and multi-dialect context. Experimental results show that the system obtains good performance with 83% of accuracy.","PeriodicalId":208567,"journal":{"name":"Int. J. Technol. Diffusion","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Technol. Diffusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijtd.2020040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Sentiment analysis is one of the recent areas of emerging research in the classification of sentiment polarity and text mining, particularly with the considerable number of opinions available on social media. The Algerian Operator Telephone Ooredoo, as other operators, deploys in its new strategy to conquer new customers, by exploiting their opinions through a sentiments analysis. The purpose of this work is to set up a system called “Ooredoo Rayek”, whose objective is to collect, transliterate, translate and classify the textual data expressed by the Ooredoo operator's customers. This article developed a set of rules allowing the transliteration from Algerian Arabizi to Algerian dialect. Furthermore, the authors used Naïve Bayes (NB) and (Support Vector Machine) SVM classifiers to assign polarity tags to Facebook comments from the official pages of Ooredoo written in multilingual and multi-dialect context. Experimental results show that the system obtains good performance with 83% of accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于阿尔及利亚运营商电话多语言情感分析的业务决策支持系统
情感分析是情感极性分类和文本挖掘的新兴研究领域之一,特别是在社交媒体上有相当数量的观点。与其他运营商一样,阿尔及利亚运营商Telephone Ooredoo也在其新战略中部署了通过情绪分析来利用他们的意见来征服新客户的策略。这项工作的目的是建立一个名为“Ooredoo Rayek”的系统,其目的是收集、音译、翻译和分类Ooredoo运营商客户表达的文本数据。本文开发了一套规则,允许从阿尔及利亚阿拉伯语到阿尔及利亚方言的音译。此外,作者使用Naïve贝叶斯(NB)和(支持向量机)SVM分类器为来自Ooredoo官方页面的多语言和多方言上下文的Facebook评论分配极性标签。实验结果表明,该系统具有良好的性能,准确率达到83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Management of Service Quality With Involvement of Technological Developments in Organizations Social Networking Sites (SNS): The Factors of User Intention Toward Online Self-Disclosure in the Kingdom of Bahrain Exploring Contextual Factors of User E-Commerce Adoption During Coronavirus Marketing Information and Marketing Intelligence: Generation of Customer Insights Embedded Systems Design Space Exploration Under Security Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1