Visualizing the relevance of social ties in user profile modeling

Dieudonné Tchuente, Marie-Françoise Canut, N. Jessel, A. Péninou, F. Sèdes
{"title":"Visualizing the relevance of social ties in user profile modeling","authors":"Dieudonné Tchuente, Marie-Françoise Canut, N. Jessel, A. Péninou, F. Sèdes","doi":"10.3233/WIA-2012-0245","DOIUrl":null,"url":null,"abstract":"Existing works about user profile modeling always model the user as an independent entity. However, in social sciences, many works show the user's behavior as strongly influenced by his social ties and/or social interactions. These results were difficult to integrate in user profile modeling because of the problem of capturing social data about users in infor-mation systems. With the advent of the social web for example, this barrier can be broken on the Web, and we can reasonably think about enriching users' profiles from social data. In this paper we propose a technique to develop users' profiles with social data. We built profiles from textual users' activities data, and we show through visualization of temporal graphs the relevance of social ties on built profiles with an experimentation carried out on 7, 081 Facebook profiles. These results motivated the potential implementation of new profiling techniques based on users' social networks, to enrich users' profiles and solve pending problems such as 'cold start problem' in personalized or recommender systems.","PeriodicalId":263450,"journal":{"name":"Web Intell. Agent Syst.","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intell. Agent Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/WIA-2012-0245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Existing works about user profile modeling always model the user as an independent entity. However, in social sciences, many works show the user's behavior as strongly influenced by his social ties and/or social interactions. These results were difficult to integrate in user profile modeling because of the problem of capturing social data about users in infor-mation systems. With the advent of the social web for example, this barrier can be broken on the Web, and we can reasonably think about enriching users' profiles from social data. In this paper we propose a technique to develop users' profiles with social data. We built profiles from textual users' activities data, and we show through visualization of temporal graphs the relevance of social ties on built profiles with an experimentation carried out on 7, 081 Facebook profiles. These results motivated the potential implementation of new profiling techniques based on users' social networks, to enrich users' profiles and solve pending problems such as 'cold start problem' in personalized or recommender systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在用户档案建模中可视化社会关系的相关性
现有的用户配置文件建模工作总是将用户作为一个独立的实体进行建模。然而,在社会科学领域,许多研究表明,用户的行为受到其社会关系和/或社会互动的强烈影响。由于在信息系统中获取用户的社会数据的问题,这些结果很难集成到用户画像建模中。例如,随着社交网络的出现,这一障碍可以在网络上被打破,我们可以合理地考虑从社交数据中丰富用户的个人资料。本文提出了一种利用社交数据建立用户档案的技术。我们从文本用户的活动数据中建立了个人资料,并通过可视化的时间图展示了社会关系在建立的个人资料中的相关性,并对7081个Facebook个人资料进行了实验。这些结果激发了基于用户社交网络的新分析技术的潜在实现,以丰富用户的个人资料并解决个性化或推荐系统中的“冷启动问题”等悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting cyberbullying in social networks using multi-agent system Scalable approximating SVD algorithm for recommender systems Web usage mining based recommender systems using implicit heterogeneous data: - A Particle Swarm Optimization based clustering approach Agent-based problem solving methods in Big Data environment Multi-agent orienteering problem with time-dependent capacity constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1