A case restoration approach to named entity tagging in degraded documents

R. Srihari, Cheng Niu, W. Li, Jihong Ding
{"title":"A case restoration approach to named entity tagging in degraded documents","authors":"R. Srihari, Cheng Niu, W. Li, Jihong Ding","doi":"10.1109/ICDAR.2003.1227756","DOIUrl":null,"url":null,"abstract":"This paper describes a novel approach to namedentity (NE) tagging on degraded documents. NE taggingis the process of identifying salient text strings inunstructured text, corresponding to names of people,places, organizations, times/dates, etc. Although NEtagging is typically part of a larger informationextraction process, it has other applications, such asimproving search in an information retrieval system, andpost-processing the results of an OCR system. We focuson degraded documents, i.e. case insensitive documentsthat lack orthographic information. Examples includeoutput of speech recognition systems, as well as e-mail.The traditional approach involves retraining an NEtagger on degraded text, a cumbersome operation. Thispaper describes an approach whereby text is first\"restored\" to its implicit case sensitive form, andsubsequently processed by the original NE tagger.Results show that this new approach leads to far lessprecision loss in NE tagging of degraded documents.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes a novel approach to namedentity (NE) tagging on degraded documents. NE taggingis the process of identifying salient text strings inunstructured text, corresponding to names of people,places, organizations, times/dates, etc. Although NEtagging is typically part of a larger informationextraction process, it has other applications, such asimproving search in an information retrieval system, andpost-processing the results of an OCR system. We focuson degraded documents, i.e. case insensitive documentsthat lack orthographic information. Examples includeoutput of speech recognition systems, as well as e-mail.The traditional approach involves retraining an NEtagger on degraded text, a cumbersome operation. Thispaper describes an approach whereby text is first"restored" to its implicit case sensitive form, andsubsequently processed by the original NE tagger.Results show that this new approach leads to far lessprecision loss in NE tagging of degraded documents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
退化文档中命名实体标记的案例恢复方法
本文描述了一种在退化文档上进行命名实体(NE)标注的新方法。网元标记是在非结构化文本中识别显著文本字符串的过程,对应于人名、地点、组织、时间/日期等。虽然NEtagging通常是较大的信息提取过程的一部分,但它还有其他应用,例如改进信息检索系统中的搜索,以及对OCR系统的结果进行后处理。我们关注退化文档,即缺乏正字法信息的不区分大小写的文档。例子包括语音识别系统的输出,以及电子邮件。传统的方法涉及对退化文本重新训练NEtagger,这是一个繁琐的操作。本文描述了一种方法,即文本首先“恢复”到其隐式区分大小写的形式,然后由原始的NE标注器处理。结果表明,该方法对退化文档的NE标注精度损失较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of imperfect OCR on part-of-speech tagging Writer identification using innovative binarised features of handwritten numerals Word searching in CCITT group 4 compressed document images Exploiting reliability for dynamic selection of classi .ers by means of genetic algorithms Investigation of off-line Japanese signature verification using a pattern matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1